首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明: (b一a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx. (*)
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明: (b一a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx. (*)
admin
2019-02-26
65
问题
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明:
(b一a)∫
a
b
f(x)g(x)dx≥∫
a
b
f(x)dx∫
a
b
g(x)dx. (*)
选项
答案
引进辅助函数 F(x)=(x一a)∫
a
x
f(t)g(t)dt一∫
a
x
f(t)dt∫
a
x
g(t)dt 转化为证明F(x)≥0(x∈[a,b]). 由F(a)=0, F’(x)=∫
a
x
f(t)g(t)dt+(x一a)f(x)g(x)一f(x)∫
a
x
g(t)dt—g(x)∫
a
x
f(t)dt =∫
a
x
f(t)[g(t)一g(x)]dt—∫
a
x
f(x)[g(t)一g(x)]dt =∫
a
x
[f(t)一f(x)][g(t)一g(x)]dt≥0(x∈[a,b]) 其中(x一a)f(x)g(x)=∫
a
x
f(x)g(x)dt,我们可得F(x)在[a,b]单调不减,F(x)≥F(a)=0(x∈[a,b]),特别有 F(b)≥0 即原式成立。
解析
转载请注明原文地址:https://jikaoti.com/ti/5OoRFFFM
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)的联合分布函数为F(χ,y),其中X服从正态分布N(0,1),且Y=X,若F(a,b)=,则()
已知函数f(χ,y)满足=0,则下列结论中不正确的是()
设f(χ)是连续且单调递增的奇函数,设F(χ)=∫0χ(2u-χ)f(χ-u)du,则F(χ)是()
设总体X的密度函数为f(χ;θ)=,-∞<χ<+∞,其中θ(θ>0)是未知参数,(X1,X2,…,Xn)为来自总体X的一个简单随机样本。(Ⅰ)利用原点矩求θ的矩估计量;(Ⅱ)求θ的极大似然估计量,并问是否为θ的无偏估计?
函数y=f(χ)由参数方程所确定,则=_______。
设f(x)在[0,1]上连续可导,f(1)=0,∫01f’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设f(x)在[1,+∞)上有连续的二阶导数,f(1)=0,f’(1)=1,且二元函数z=(x2+y2)f(x2+y2)满足,求f(x)在[1,+∞)的最大值.
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+∫0xg(x—t)dt,则().
随机试题
设y=exsinx,则y"’=()
企业采用公允价值模式对投资件房地产进行后续计量,下列说法l{|错误的是()。
二十世纪初,将日本普通学校音乐教育的经验带回中国的爱国知识分子有()。
根据下列材料回答问题。2011年年底,全国拥有水上运输船舶17.92万艘,比上年年末增长0.5%;净载重量21264.32万吨,增长17.9%;平均净载重量增长17.3%;集装箱箱位147.52万TEU,增长11.4%;船舶功率5949.66万千瓦,增长
A、 B、 C、 D、 D
Inthefollowingtext,somesentenceshavebeenremoved.ForQuestions1~5,choosethemostsuitableonefromthelistA~Gtofi
现有一个已经建好的“按雇员姓名查询”窗体,如下图所示运行该窗体后,在文本框中输入要查询雇员的姓名,当按下“查询”按钮时,运行一个名是“按雇员姓名查询”的查询,在查询显示出所查雇员的雇员ID、姓名和职称等三个字段。若窗体中的文本框名称为tName,设计“
【21】【38】
Whatdoesthemanaskthewomantodo?
A、Inexpensiveandwelldecorated.B、Expensiveandluxurious.C、Inexpensiveandhumble.D、Expensivebutworthwhile.D由选项预测本题可能考查某
最新回复
(
0
)