首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=4x-4y-x2-y2在区域D:x2+y2≤18上的最大值和最小值。
求函数f(x,y)=4x-4y-x2-y2在区域D:x2+y2≤18上的最大值和最小值。
admin
2015-11-16
29
问题
求函数f(x,y)=4x-4y-x
2
-y
2
在区域D:x
2
+y
2
≤18上的最大值和最小值。
选项
答案
解 先求出f(x,y)在开区域x
2
+y
2
<18内的可能极值点,解方程组 [*] 得其驻点(2,-2)∈D。 再求f(x,y)在边界x
2
+y
2
=18上的可能极值点,下用拉格朗日乘数法求之。为此,设F(x,y,λ)=4x-4y-x
2
-y
2
+λ(x
2
+y
2
-18),则 [*] 由前两个方程易得[*],于是xy-2y=xy+2x,即y=-x,将其代入第三个方程得到x=±3,y=[*]3,求得边界区域D上的驻点(3,-3),(-3,3),因f(2,-2)=8,f(3,-3)=6,f(-3,3)=-42,故f(x,y)在D上的最大值为8,最小值为-42。
解析
转载请注明原文地址:https://jikaoti.com/ti/0NPRFFFM
0
考研数学一
相关试题推荐
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设矩阵,已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P-1AP为对角形矩阵.
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(x)dt,求证:(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;(Ⅱ)∫0xf(t)dt=∫0Tf(x)dx;(Ⅲ)若又有f(x)
设二次型f(x1,x2,x3)=x12+x22+x32+4x1x2+4x1x3+4x2x3,写出f的矩阵A,求出A的特征值,并指出曲面f(x1,x2,x3)=1的名称.
设二次型f(x1,x2,x3)=XTAX,tr(A)=1,又B=且AB=0.(1)求正交矩阵Q,使得在正交变换x-Qy下二次型化为标准形;(2)求矩阵A.
计算,其中D为单位圆x2+y2=1所围成的位于第一象限的部分。
设f(x)是连续函数。求初值问题的解,其中a>0.
设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)丨x2+y2+z2≤t2},D(t)={(z,y)丨x2+y2≤t2}.证明当t>0时,F(t)>2/πG(t).
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{丨X丨
随机试题
女性,25岁。反复出现皮肤紫癜,月经量多1年余,此前无服药史。脾肋下1cm,血像:血红蛋白105g/L,白细胞5.4×109/L,血小板25×109/L。其余血沉、尿常规及肝功能均正常。抗核抗体谱阴性。骨髓像示颗粒型巨核细胞增多。以下最可能的诊断是
下列选项中,牙本质敏感症的首选治疗方法是
用作能源加工、转换的能源可视作原材料投入。()
下列各项属于连续型生产方式的是()。
刘校长尝试采取打乱传统的按年龄编班的做法,只根据学生的学习能力或学习成绩编班进行分组教学。这种分组属于()。
水电站:电车
Theideaofownershipiseverywhere.Titledeedsestablishandprotectownershipofourhouses,whilesecurityofpropertyisas
父は一年に2回山()登ります。
Weareconcernedtodeveloptheabilitiesofallourpupilstothefull,notjusttheiracademicability.
Somethingkeptscratchingontheoutsideofthetent.Iwouldn’thavethoughtmuchaboutit【C1】______Ihadn’trecentlyseena
最新回复
(
0
)