首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(x)dt,求证: (Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)∫0xf(t)dt=∫0Tf(x)dx; (Ⅲ)若又有f(x)
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(x)dt,求证: (Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)∫0xf(t)dt=∫0Tf(x)dx; (Ⅲ)若又有f(x)
admin
2021-11-09
42
问题
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫
0
x
f(x)dt,求证:
(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;
(Ⅱ)
∫
0
x
f(t)dt=
∫
0
T
f(x)dx;
(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),n为自然数,则当nT≤x<(n+1)T时,有
n∫
0
T
f(x)dx≤∫
0
x
f(t)dt<∫
0
T
(n+1)f(x)dx.
选项
答案
(Ⅰ)即确定常数k,使得φ(x)=F(x)-kx以T为周期.由于 φ(x+T)=F(x+T)-k(x+T)=∫
0
x
f(x)dt-kx+∫
0
x+T
f(t)dt-kT =φ(x)+∫
0
T
f(t)dt-kT, 因此,取k=[*]∫
0
T
f(t)dt,φ(x)=F(x)-kx,则φ(x)是以T为周期的周期函数.此时 F(x)=[ [*]∫
0
T
f(t)dt]x+φ(x). (Ⅱ)不能用洛必达法则.因为[*]不存在,也不为∞.但∫
0
x
(t)dt可表示成 ∫
0
x
(t)dt=[*]∫
0
T
f(t)dt+φ(x). φ(x)在(-∞,+∞)连续且以T为周期,于是,φ(x)在[0,T]有界,在(-∞,+∞)也有界.因此 [*] (Ⅲ)因f(x)≥0,所以当nT≤x<(n+1)T时, n∫
0
T
f(t)dt=∫
0
nT
f(t)≤∫
0
x
f(t)<∫
0
(n+1)T
f(t)dt=(n+1)∫
0
T
f(t)
解析
转载请注明原文地址:https://jikaoti.com/ti/7ClRFFFM
0
考研数学二
相关试题推荐
设f(x)=在x=0处连续,则a=__________,b=___________.
设fn(x)=x+x2+...+xn(n≥1).证明:方程fn(x)=1有唯一的正根xn.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解。
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。设,求出可由两组向量同时线性表示的向量。
设A为n阶矩阵,k为常数,则(kA)*等于()。
方程y’’’-y’’-y’+y=6e﹣x-3ex+1的特解形式(a,b,c是常数)为()
二次型f(x1,x2,x3)=(x1+x2)2+(2x1+3x2+x3)2一5(x2+x3)2的规范形为()
关于二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
(1990年)已知函数f(χ)具有任意阶导数,且f′(χ)=[f(χ)]2,则当n为大于2的正整数时,f(χ)的n阶导数f(n)(χ)是【】
随机试题
简述感觉、知觉、记忆与思维的区别与联系。
判断直线和直线的位置关系
NewYorkCityCouncilpassedthebanonsmokinginitsparksandonitsbeachesontheprinciplethatanonsmokershouldn’thave
监理单位履行特定职务所用费用监理合同无约定的,由( )。
关于基金宣传推介材料,下列说法中正确的是()。
下列情况中,对被投资企业的股权投资应继续采用权益法核算的是( )。
()是先进生产力和先进文化的创造主体,也是实现自身利益的根本力量。
对待中华民族传统道德,要坚持()的立场。
阅读下面的材料,根据要求写作文。战国时期,位于四川西部的蜀国水旱灾害连年发生,旱则赤地千里,涝则一片泽国,使老百姓家无隔夜粮,身无御寒衣。公元前316年,秦国灭蜀国,改为蜀郡。秦昭王在公元前约250年任命李冰为蜀郡守。李冰到蜀郡后,见到当地严重的
Theyarrivedatafarmhouse,infrontof______satasmallboy.
最新回复
(
0
)