首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(x)dt,求证: (Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)∫0xf(t)dt=∫0Tf(x)dx; (Ⅲ)若又有f(x)
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(x)dt,求证: (Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)∫0xf(t)dt=∫0Tf(x)dx; (Ⅲ)若又有f(x)
admin
2021-11-09
46
问题
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫
0
x
f(x)dt,求证:
(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;
(Ⅱ)
∫
0
x
f(t)dt=
∫
0
T
f(x)dx;
(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),n为自然数,则当nT≤x<(n+1)T时,有
n∫
0
T
f(x)dx≤∫
0
x
f(t)dt<∫
0
T
(n+1)f(x)dx.
选项
答案
(Ⅰ)即确定常数k,使得φ(x)=F(x)-kx以T为周期.由于 φ(x+T)=F(x+T)-k(x+T)=∫
0
x
f(x)dt-kx+∫
0
x+T
f(t)dt-kT =φ(x)+∫
0
T
f(t)dt-kT, 因此,取k=[*]∫
0
T
f(t)dt,φ(x)=F(x)-kx,则φ(x)是以T为周期的周期函数.此时 F(x)=[ [*]∫
0
T
f(t)dt]x+φ(x). (Ⅱ)不能用洛必达法则.因为[*]不存在,也不为∞.但∫
0
x
(t)dt可表示成 ∫
0
x
(t)dt=[*]∫
0
T
f(t)dt+φ(x). φ(x)在(-∞,+∞)连续且以T为周期,于是,φ(x)在[0,T]有界,在(-∞,+∞)也有界.因此 [*] (Ⅲ)因f(x)≥0,所以当nT≤x<(n+1)T时, n∫
0
T
f(t)dt=∫
0
nT
f(t)≤∫
0
x
f(t)<∫
0
(n+1)T
f(t)dt=(n+1)∫
0
T
f(t)
解析
转载请注明原文地址:https://jikaoti.com/ti/7ClRFFFM
0
考研数学二
相关试题推荐
求.
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=,证明:存在ε∈(0,2),使得f"’(ε)=2.
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M﹥0).证明:对此邻域内任一异于x0的点,有.其中x’为x关于x0的对称点。
若f(x)=2nx(1-x)n,记Mn==________.
设函数y=y(x)由确定,则y=y(x)在x=ln2处的法线方程为________.
设四阶矩阵A=(α1,α2,α3,α4),方程组Ax=B的通解为(1,2,2,1)T+c(1,﹣2,4,0)T,c为任意常数。记B=(α3,α2,α1,β-α4),求Bx=α1-α2的通解。
设则f’(x)=0的根的个数为()
设f(x)和φ(x)在(一∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
曲线的渐近线条数为()
随机试题
下列哪两经疾病多见于小儿时期()
(2008年)设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f’(x)>0,f’’(x)>0,则在(-∞,0)内必有()。
化学管材的管道连接一般有()等形式。
下列项目中,说法正确的有()。
上海东方公司是一家亚洲地区的玻璃套装门分销商,套装门在香港生产然后运至上海。管理当局预计年度需求量为10000套。套装门的购进单价为395元(包括运费,单位是人民币,下同)。定购和储存这些套装门相关资料如下:(1)去年的订单共22份,总处理成本134
关于股份有限公司采用收购本公司股票方式减资,下列说法中正确的有()。
若幼儿将小珠子塞人鼻孔,不应()。
打开工作簿文件EXA.XLAX,对工作表“‘计算机动画技术’成绩单”内的数据清单的内容进行分类汇总(提示:分类汇总前先按主关键字“系别”升序排序),分类字段为“系别”,汇总方式为“平均值”,汇总项为“考试成绩”,汇总结果显示在数据下方,将执行分类汇总后的上
Peopleinnately______forsuperiorityovertheirpeersalthoughitsometimestakestheformofanexaggeratedlustforpower.
Changesinthewaypeoplelivebringaboutchangesinthejobsthattheydo.Moreandmorepeopleliveintownsandcitiesinste
最新回复
(
0
)