首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)-1=E+B(E-AB)-1A.
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)-1=E+B(E-AB)-1A.
admin
2018-06-27
28
问题
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)
-1
=E+B(E-AB)
-1
A.
选项
答案
本题看似要证明两个结论,实际上只要证明等式(E-BA)[E+b(E-AB)
T
A]=E成立,两个结论就都得到了! (E-BA)[E+B(E-AB)
-1
A]-(E-BA)+(E-BA)B(E-AB)
-1
A =(E-BA)+(B-BAB)(E-AB)
-1
A =(E-BA)+B(E-AB)(E-AB)
-1
A =E-BA+bA=E.
解析
转载请注明原文地址:https://jikaoti.com/ti/zjdRFFFM
0
考研数学二
相关试题推荐
设矩阵,问当k为何值时,存在可逆矩阵P,使得P-1AP为对角矩阵?并求出P和相应的对角矩阵.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:(1)A2.(2)矩阵A的特征值.
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S
求微分方程y"+4y’+4y=e-2x的通解.
已知矩阵只有一个线性无关的特征向量,那么矩阵A的特征向量是__________.
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
随机试题
A.散射B.轫致辐射C.康普顿散射D.光电吸收E.光化辐射光电效应又称为
风湿性心脏病二尖瓣狭窄并发栓塞时,最常见的栓塞部位在
风温初起,症见但咳,身热不甚,口微渴,脉浮数。方剂宜选用
快速牵拉肌肉时发生的牵张反射是使
舌下片的特点包括
水是基础性的自然资源,又是()的经济资源。
下列情况中,可以用红色墨水记账的是()。
当很难区分某种会计变更是属于会计政策变更还是会计估计变更的情况下,通常应将这种会计变更()。
李静在结婚前与男朋友吴辰协议约定她父母留给她的一套老房子和一些存款为个人特有财产。但不幸的是,3年后,二人因感情不和诉讼离婚。请问法院会判定属于夫妻个人特有财产有()
Mostepisodesofabsent-mindedness—forgettingwhereyouleftsomethingorwonderingwhyyoujustenteredaroom—arecausedbya
最新回复
(
0
)