首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
admin
2014-02-05
36
问题
已知α
1
,α
2
,α
3
,α
4
是3维非零向量,则下列命题中错误的是
选项
A、如果α
4
不能由α
4
,α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关.
B、如果α
1
,α
2
,α
3
线性相关,α
2
,α
3
,α
4
线性相关,那么α
1
,α
2
,α
4
也线性相关.
C、如果α
3
不能由α
1
,α
2
线性表出,α
4
不能由α
2
,α
3
线性:表出,则α
1
可以由α
2
,α
3
,α
4
线性表出.
D、如果秩r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
),则α
4
可以由α
1
,α
2
,α
3
线性表出.
答案
B
解析
例如α
1
=(1,0,0)
T
,α
2
=(0,1,0)
T
,α
3
=(0,2,0)
T
,α
4
=(0,0,1)
T
,可知B不正确.应选B.关于A:如果α
1
,α
2
,α
3
线性无关,又因α
1
,α
2
,α
3
,α
4
是4个3维向量,它们必线性相关,而知α
4
必可由α
1
,α
2
,α
3
线性表出.关于C:由已知条件,有(1)r(α
1
,α
2
)≠r(α
1
,α
2
,α
3
),(Ⅱ)(α
1
,α
2
,α
3
)≠r(α
2
,α
3
,α
4
).若r(α
2
,α
3
)=1,则必有r(α
1
,α
2
)=r(α
1
,α
2
,α
3
),与条件(I)矛盾.故必有r(α
2
,α
3
)=2.那么由(Ⅱ)知r(α
2
,α
3
,α
4
)=3,从而r(α
1
,α
2
,α
3
,α
4
)=3.因此α
1
可以由α
2
,α
3
,α
4
线性表出关于(D):经初等变换有(α
1
,α
1
+α
2
,α
2
+α
3
)→(α
1
,α
2
,α
2
+α
3
)→(α
1
,α
2
,α
3
),(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)→(α
4
,α
1
,α
2
,α
2
)→(α
1
,α
2
,α
3
,α
4
),从而r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,α
4
).因而α
4
可以由α
1
,α
2
,α
3
线性表出.
转载请注明原文地址:https://jikaoti.com/ti/PNDRFFFM
0
考研数学二
相关试题推荐
[2011年]设A为三阶实对称矩阵,A的秩为2,且求矩阵A.
(96年)设向量α1,α2,…,αt,是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,…,β+αt,线性无关.
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为()
(06年)设f(χ,y)与φ(χ,y)均为可微函数,且φ′y愤怒(χ0,y0)≠0,已知(χ0,y0)是f(χ,y)在约束条件φ(χ,y)=0下的一个极值点,下列选项正确的是【】
设n阶矩阵A与B等价,则必有()
(01年)设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有P{|X+Y|≥6}≤_______.
设X,Y为两个随机变量,其中E(X)=2,E(Y)=-1,D(X)=9,D(Y)=16,且X,Y的相关系数为ρ=-1/2,由切比雪夫不等式得P{|X+Y-1|≤10}≥()。
设试求f′(x).
设级数an(2x-2)n在点x=-1处条件收敛,则级数an(2x-1)2n+1在x=4/3处()。
设则f(x)在x=1处的________。
随机试题
X服从二项分布B(n,p),则有【】
呃逆的基本治法是()
如果抵押房地产是抵押人扶养家属生活的所必需居住房屋,人民法院不得拍卖、变卖或者抵债。()
凡施工图结构、工艺、平面布置等有重大改变,或变更部分超过图面的(),应当重新绘制竣工图。
钢制压力容器产品焊接试件力学性能试验的检验项目是()。
董事会作出决议,必须经全体董事的过半数通过。()
以“红雕嵌玉,平磨螺钿”为产品特色的是()。
社会主义核心价值体系是社会主义意识形态的本质体现,是全国人民团结奋斗的共同思想基础。我国之所以要加强社会主义核心价值体系建设,是因为()。
论述布鲁纳的发现学习与奥苏伯尔的有意义接受学习的异同。
一大群行为亢进的,并且日常饮食中包括大量含有添加剂的食物的儿童被研究者观测用于评价他们是否存在行为问题。然后让这些儿童吃几个星期的含较少添加剂的食物,接下来再对他们进行观测。起初有接近60%的儿童有行为问题,改变了他们的饮食后,仅有30%的儿童有行为问题。
最新回复
(
0
)