首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型x12+x22+x32一4x1x2—4x1x3+2ax2x3经正交变换化为3y12+3y22+6y32,求a,b的值及所用正交变换.
设二次型x12+x22+x32一4x1x2—4x1x3+2ax2x3经正交变换化为3y12+3y22+6y32,求a,b的值及所用正交变换.
admin
2016-03-05
444
问题
设二次型x
1
2
+x
2
2
+x
3
2
一4x
1
x
2
—4x
1
x
3
+2ax
2
x
3
经正交变换化为3y
1
2
+3y
2
2
+6y
3
2
,求a,b的值及所用正交变换.
选项
答案
二次型及其标准形的矩阵分别是[*]由于是用正交变换化为标准形,故A与B不仅合同而且相似.那么有1+1+1=3+3+b得b=一3.对λ=3,则有[*]由(3E—A)x=0,得特征向量α
1
=(1,一1,0)
T
,α
2
=(1,0,一1)
T
.对λ=一3,由(一3E—A)x=0,得特征向量α
3
=(1,1,1)
T
.因为λ=3是二重特征值,对α
1
,α
2
正交化有[*]经正交交换x=Cy,二次型化为3y
1
2
+3y
2
2
一3y
3
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/zUDRFFFM
0
考研数学二
相关试题推荐
设A为n阶实对称矩阵,且A2=A,r(A)=r(0<r<n),则行列式|A-2E|=________.
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0.证明:方程f’(x)=0在(0,1)内至少有一个实根;
设向量a=(1,1,-1)T是的一个特征向量.证明:A的任一特征向量都能由a线性表示.
设n维列向量a=(a,0,…,0,a)T(a>0)且A=E-aaT,A-1=E+1/a·aaT,则a=________.
设总体X~N(μ,8),μ未知,X1,X2,…,X36是取自X的一个简单随机样本,如果以区间作为μ的置信区间,求置信度
设anxn在x=3处条件收敛,则(x一1)n在x=一1处()
设f(x)在[-π,π]上可积,且ak,bk是f(x)的傅里叶系数,试证对任意自然数n,成立不等式
计算,其中r=(x-x0)i+(y-y0)j+(z-z0)k,r=|r|,n是曲面∑的外法向量,点M0(x0,y0,z0)是定点,点M(x,y,z)是动点,研究以下两种情况:(1)点M0(x0,y0,z0)在的∑外部;(2)点M0(x0,y0,z0)在
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
随机试题
Chomskynotedthedistinctionbetweenlinguistic______andlinguisticperformance.
Theslaverywaslegallyabolishedin1865by______amendment.()
糖皮质激素可用于治疗哪些疾病?
男,18岁。意识不清3小时入院,既往患l型糖尿病5年,长期皮下注射胰岛素。近3天因腹泻而停用。体检:血压70/50mmHg,皮肤中度失水征,呼吸深大,有烂苹果味,心率130次/分。下列与诊断无关的检查是
下列关于票据保证的表述中,哪些是正确的?()
某多层丙类仓库地上4层,耐火等级为二级,建筑高度为24m,建筑面积为16000m2,占地面积为5200m2,建筑体积为96000m3。储存棉、麻、服装衣物等物品,堆垛储存,堆垛高度不大于6m。该仓库设消防泵房和两个500m3的消防水池,消防设施有室内外消火
同时具备“三国时期”“皇帝”“邺下文人集团”这三种特征的历史人物是()。
一、注意事项1.本次申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、写作能力和文字表达能力的综合测试。2.请使用简体汉字作答。二、给定资料1.安全发展,是指经济发展和社会进步必须以安全为前提和保障,把发展建立在
毛泽东当年曾意味深长地说:“今天是进京赶考的日子”,“我们决不当李自成。我们都希望考个好成绩”。新中国成立50多年来,“两个务必”时时警示着处于执政地位的中国共产党人。也激励着广大干部、党员谦虚谨慎、艰苦奋斗、开拓进取。当然。随着时间的推移和时代的发展,“
请将文本的第二段设置为2倍间距。
最新回复
(
0
)