首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设函数f(x)具有二阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上( ).
[2014年] 设函数f(x)具有二阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上( ).
admin
2019-05-06
22
问题
[2014年] 设函数f(x)具有二阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上( ).
选项
A、当f’(x)≤0时,f(x)≥g(x)
B、当f’(x)≤0时,f(x)≤g(x)
C、当f’’(x)≥0时,f(x)≥g(x)
D、当f’’(x)≥0时,f(x)≤g(x)
答案
D
解析
由g(x)的表达式知,g(0)=f(0),g(1)=f(1),即f(x)与g(x)在区间[0,1]端点的函数值相等.又g(x)=f(0)+[f(1)-f(0)]x是一条直线,斜率k=f(1)一f(0).当f’’(x)≥0时,f(x)在区间[0,1]上是凹的,而g(x)是连接f(x)两个端点的弦(如图所示),故f(x)≤g(x).仅D入选.
转载请注明原文地址:https://jikaoti.com/ti/yzoRFFFM
0
考研数学一
相关试题推荐
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2β2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βs也为Ax=0的一个基础解系.
设A=,E为3阶单位矩阵.(I)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
设随机变量X的密度函数为f(x)=1/2e|x|(-∞<x<+∞).求Cov(X,|X|),问X,|X|是否不相关?
设A,B,A+B,A-1+B-1皆为可逆矩阵,则(A-1+B-1)-1等于().
设总体X的概率分布为θ(0<θ<1/2)是未知参数.用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值.
设两曲线y=x2+ax+b与-2y=-1+xy3在点(-1,1)处相切,则a=_______,b=_______.
设方程组为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.求|A*+3E|.
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.确定a,使S1+S2达到最小,并求出最小值;
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ),其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
设向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt,如果(Ⅰ)可由(Ⅱ)线性表出,且秩r(Ⅰ)=r(Ⅱ),证明(Ⅰ)与(Ⅱ)等价.
随机试题
设某种元件的使用寿命T的分布函数为其中θ,m为参数且大于零.任取n个这种元件做寿命试验,测得它们的寿命分别为t1,t2,…,tn,若m已知,求θ的最大似然估计值
()放大了金融衍生品的风险。
我国股票市场的最重要的组成部分是()。
会计科目的设置,应满足()。
Theutterance"Now,correctmeifI’mwrong..."suggeststhatpeoplearelikelytoobservethe______Maximindailyconversation
2005年5月份全国基本型乘用车的产量是()。与2005年同期比较,2006年前5个月销量增幅最大的车型是()。
关于命名××省省级优质发展企业的××[2013]×发14号为了加强企业合同管理,规范经营行为,维护市场秩序,在2012年省政府首批命名省级优质
一票否决这一择案规则又称为()。
孩子的心灵是一块神奇的土地,播种一种______,就会收获一种行为;播种一种______,就会收获一种习惯;播种一种______,就会收获一种性格;播种一种______,就会收获一种命运。填入画横线部分最恰当的一项是:
Evenifgovernmentshaveestablishedregulationsonscientificandtechnologicaldevelopment,itsfurtheradvancement______(仍然可能
最新回复
(
0
)