首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2β2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βs也为Ax=0的一个基础解系.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2β2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βs也为Ax=0的一个基础解系.
admin
2018-04-15
25
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
β
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
s
=t
1
α
s
+t
2
α
1
,其中t
1
,t
2
为实常数.试问t
1
,t
2
满足什么关系时,β
1
,β
2
,…,β
s
也为Ax=0的一个基础解系.
选项
答案
由Aβ
1
=A(t
1
α
1
+t
2
α
2
)=t
1
Aα
1
+t
2
Aα
2
=0+0=0,知β
1
为Ax=0的解,同理可知β
2
,β
3
,…,β
s
均为Ax=0的解.已知Ax=0的基础解系含s个向量,故Ax=0的任何s个线性无关的解都可作为Ax=0的基础解系.因此β
1
,β
2
,…,β
s
为Ax=0的基础解系,当且仅当β
1
,β
2
,…,β
s
线性无关. 设有一组数k
1
,k
2
,…,k
s
,使得 k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0 即(t
1
k
1
+t
2
k
2
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+…+(t
2
k
s—1
+t
1
k
s
)α
s
=0, 由于α
1
,α
2
,…,α
s
线性无关,有 [*] (*) 上面齐次线性方程组的系数行列式为 [*] 故当且仅当t
1
s
+(一1)
I+s
t
2
s
≠1时,即当s为偶数,t
1
≠±t
2
;s为奇数,t
1
≠一t
2
时,齐次线性方程组(*)只有零解,β
1
,β
2
,…,β
s
线性无关,从而可作为Ax=0的基础解系.
解析
本题综合考查齐次线性方程组的基础解系的概念及其只有零解的条件,向量组线性相关性的概念及其判定.注意本题判定β
1
,β
2
,…,β
s
的线性相关性,属于一种常见题型.
转载请注明原文地址:https://jikaoti.com/ti/WRVRFFFM
0
考研数学一
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0。证明α1,α2,…,αn线性无关;
设X1,X2,…,Xn是取自标准正态总体的简单随机样本,已知统计量服从t分布,则常数α=________。
设向量组α1,α2,α3线性无关,则下列向量组中线性无关向量组是()。
(1)求级数的和函数S(x);(2)将S(x)展开为x-π/3的幂级数。
设总体X的概率密度为其中θ>0,μ,θ为未知参数,X1,X2,…,Xn为取自总体X的样本。(Ⅰ)试求μ,θ的最大似然估计量(Ⅱ)判断是否为θ的无偏估计量,并证明。
设A=(αij)m×n,y=(y1,y2,…,yn)T,b=(b1,b2,…,bm)T,x=(x1,x2,…,xn)T,证明方程组Ay=b有解的充分必要条件是方程组无解(其中0是n×1矩阵)。
设a为常数,则级数
随机试题
下列公式正确的有()
从19世纪60年代到90年代,洋务派举办的洋务事业有哪些?
背景资料:某工程施工进度计划网络图如下图所示,假定各项工作均匀速施工。由于工作B、工作L、工作H为采用特殊工艺的施工过程,涉及某专利技术的采用,故这3项工作只能由某一特定的施工队来完成。问题:文明施工应包括哪些工作?
下列有关原材料核算的说法中,正确的有()。
下列社会保险险种中,企业职工个人不用缴费的是()。
在我国实际儿童工作中,( )一般在面向儿童的个别谈话中承担着个案工作员的角色,主要针对一些存在偏差的儿童进行谈话式的个案工作辅导。
行政裁决一般不是终局裁决,对之不服,仍可起诉。()
寻租行为
搜索引擎在外观、功能等方面千差万别,但其构成一般包括______、索引器、检索器和用户接口4个部分。
Ihaveahorse.Doyouknowwhatcoloritis?Tomsaid,"Iguessitisnotblack."Briansaid,"Itiseitherbrownorgrey."Chri
最新回复
(
0
)