首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,E为3阶单位矩阵. (I)求方程组Ax=0的一个基础解系; (Ⅱ)求满足AB=E的所有矩阵B.
设A=,E为3阶单位矩阵. (I)求方程组Ax=0的一个基础解系; (Ⅱ)求满足AB=E的所有矩阵B.
admin
2018-04-15
38
问题
设A=
,E为3阶单位矩阵.
(I)求方程组Ax=0的一个基础解系;
(Ⅱ)求满足AB=E的所有矩阵B.
选项
答案
(I)对方程组的系数矩阵A施以初等行变换 [*] 设x=(x
1
,x
2
,x
3
,x
4
)
T
,选取为自由未知量,则得方程组的一般解:x
1
=一x
4
,x
2
=2x
4
,x
3
=3x
4
(x
4
任意). 令x
4
=1,则得方程组Ax=0的一个基础解系为 α=(一1,2,3,1)
T
(Ⅱ)对矩阵[A | E]施以初等行变换 [*], 记E=[e
1
,e
2
,e
3
],则 方程组Ax=e
1
的同解方程组为[*],k
1
为任意常数,同理得方程组Ay=e
2
的通解为y=k
2
α+[*],k
2
为任意常数,方程组Az=e
3
的通解为z=k
3
α+[*],k
3
为任意常数,于是得所求矩阵为 [*]
解析
本题综合考查初等行变换的基本运算、齐次线性方程组的基础解系和非齐次线性方程组的解的结构等基本概念.注意若记矩阵B、E按列分块分别为B=[x y, z],E=[x
1
x
2
x
3
],则AB=E的第1、2、3列分别是Ax=e
1
,Ay=e
2
,Az=e
3
,因此求矩阵B等价于求解上述3个非齐次线性方程组,而具体求解时采取对矩阵[A | E]施以初等行变换(而不是分别对3个非齐次线性方程组的增广矩阵施以初等行变换)则减少了计算量.
转载请注明原文地址:https://jikaoti.com/ti/cRVRFFFM
0
考研数学一
相关试题推荐
A是三阶矩阵,P是三阶可逆矩阵,,且Aα1=α1,Aα2=α2,Aα3=0,则P应是()。
设f(u)有连续的二阶导数,且z=f(exsiny)满足方程
A、P1P3AB、P2P3AC、AP3P2D、AP1P3B矩阵A作两次行变换可得到矩阵B,而AP3P2和AP1P3是对矩阵A作列变换,故应排除C,D。把矩阵A的第1行的2倍加至第3行,再将1,2两行互换得到矩阵B;或者把矩阵A的1,2两行互换后,再
设随机变量X和Y相互独立,且D(X)=4D(Y),则随机变量2X+3Y与2X一3Y的相关系数为________。
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次为α1,α2,α3,若P=(α1,2α3,一α2),则P-1AP=()
求锯二阶微分方程。
设y=ex(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_________.
设二维随机变量(X,Y)服从二维正态分布记U=max{X,Y),V=min{X,Y).(Ⅰ)求Z=|X一Y|的概率密度fZ(z);(Ⅱ)求E(U),E(V).
设A是n(n>1)阶方阵,ξ1,ξ2,…,ξn是n维列向量,已知Aξ1=ξ2,Aξ2=ξ3,…,Aξn一1=ξn,Aξn=0,且ξn≠0.(Ⅰ)证明ξ1,ξ2,…,ξn线性无关;(Ⅱ)求Ax=0的通解;(Ⅲ)求出A的全部特征值和特征向量,并证明A不可
设u=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数.证明:.
随机试题
小青龙汤的功用是()
A.清热化湿,理气和中B.利湿化浊,清热解毒C.利水渗湿,温阳化气D.宣畅气机,清利湿热E.清热泻火,利水通淋
金融机构是洗钱的唯一渠道。()
甲企业于2012年1月1日以3200万元的价格收购了乙企业80%股权。在购买日,乙企业可辨认净资产的公允价值为3000万元。假定乙企业的所有资产被认定为一个资产组,而且乙企业的所有可辨认资产均未发生资产减值迹象,未进行过减值测试。2012年年末,甲企业确定
公务员符合下列哪些条件,可以提前退休?()
古文明一般形成于中维度大河沿岸的内陆地区,适宜的气候、肥沃的土壤条件较适宜于人类活动。而随着科学技术的发展,这些要素逐渐被弱化,人类活动已经从内陆转向沿海,出现了现代沿海向内陆的经济梯度。对比古文明与现代沿海文明的环境差异,其中最核心的是交通和可接近性对相
以下说法正确的是:
我国的人民民主专政是马列主义关于无产阶级专政的理论同我国革命具体实践相结合的产物,是我们党和毛泽东同志的一个创造,是一种新型的民主制度,这种制度的“新”体现在
TheproposaltolayatelegraphcablefromEuropetoAmericamadeoceanographicstudiestakeona(n)______."Defied"inthe5t
What’stheforeignministers’purposeforthemeetinginKyotoJapan?
最新回复
(
0
)