设f(x)在[0,+∞)上可导,f(0)=1,且f’(x)一f(x)+∫0xf(t)dt=0,求 ∫[f"(x)一f’(x)]e—xdx.

admin2017-07-26  30

问题 设f(x)在[0,+∞)上可导,f(0)=1,且f’(x)一f(x)+0xf(t)dt=0,求
    ∫[f"(x)一f’(x)]e—xdx.

选项

答案由题设知,f’(x)一f(x)+[*]∫0xf(t)dt=0,并且f’(0)=f(0)=1.于是,有 (1+x)f’(x)一(1+x)f(x)+∫0xf(t)dt=0. 两边对x求导得 f’(x)+(1+x)f"(x)一f(x)一(1+x)f’(x)+f(x)=0. 即(1+x)f"(x)一xf’(x)=0. 令f’(x)=p,则有(1+x)p’一xp=0. [*] ln|p|=x—ln(1+x)+ln|c|, [*] 由f’(0)=1,得c=1.代入上式得,p=f’(x)=[*].故 ∫[f"(x)一f’(x)]e—xdx=∫f"(x)e—xdx一∫f’(x)e—xdx =f’(x)e—x+∫f’(x)e—xdx—∫f’(x)e—xdx =f’(x)e—x+c=[*]+c.

解析 ∫[f"(x)一f’(x)]e—xdx=∫f(x)e—xdx—∫f’(x)e—xdx
    =f’(x)e—x+∫f’(x)e—xdx—∫f’(x)e—xdx
    =f’(x)e—x+c.
  计算该积分的关键是求f’(x).
转载请注明原文地址:https://jikaoti.com/ti/yPSRFFFM
0

最新回复(0)