首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b.证明:A可对角化.
admin
2021-11-15
25
问题
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b.证明:A可对角化.
选项
答案
由(aE-A)(bE-A)=0,得|aE-A|·|bE-A|=0,则|aE-A|=0或者|bE-A|=0.又由(aE-A)(bE-A)=0,得r(aE-A)+r(bE-A)≤n, 同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n, 所以r(aE-A)+r(bE-A)=n, (1)若|aE-A|≠0,则r(aE-A)=n,所以r(bE-A)=0,故A=bE. (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE. (3)若|aE-A|=0且|bE-A|=0,则a、b都是矩阵A的特征值 方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个; 方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个. 因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/xulRFFFM
0
考研数学二
相关试题推荐
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求出函数y(x)的极值。
设y(x)为微分方程y"-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则=_________.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数。
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等。证明:|A|≠0.
设A为三阶正交阵,且|A|<0,|B-A|=-4,则|E-ABT|=________.
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2—2α3,(α2一α1),α1—3α2+2α3中,是对应齐次线性方程组Ax=0解向量的共有()
随机试题
咽淋巴环由哪些结构围成?
下列关于力偶的描述正确的是
下列疾病的病变以增生性炎变化为主的是
一孕妇,29岁。既往体健,近1年来发现HBsAg阳性,但无任何症状,肝功能正常。经过十月怀胎,足月顺利分娩—4500克男婴,分娩后,医生对此新生儿进行预防注射。切断的传播途径是
()耐火等级建筑的主要构件,除防火墙体外,其余构件可采用难燃烧体或可燃烧体。
轨道线比趋势线重要,轨道线可以单独存在,而趋势线则不能单独存在。()
在单位工作时。你会()。
政府制定或调整重大劳动关系标准应当贯彻“三方原则”,其中三方指的是()。
托尔曼得出“学习的实质是形成认知地图”结论的依据是()
A、Theyareoutoftouchwitheachother.B、Theyaretoobusytovisiteachother.C、Theyliveandworkindifferentplaces.D、Th
最新回复
(
0
)