首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是正定矩阵,证明|A+E|>1.
已知A是正定矩阵,证明|A+E|>1.
admin
2021-11-09
35
问题
已知A是正定矩阵,证明|A+E|>1.
选项
答案
此题用特征值较简单. 设A的特征值为λ
1
,λ
2
,…,λ
n
,则A+E的特征值为λ
1
+1,λ
2
+1,…,λ
n
+1. 因为A正定,所以λ
i
>0,λ
i
+1>1(i=1,2,…,n).于是 |A+E|=(λ
1
+1)(λ
2
+1)…(λ
n
+1)>1.
解析
转载请注明原文地址:https://jikaoti.com/ti/x3lRFFFM
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且.证明:存在ε∈(a,b),使得f"(ε)﹤0.
设f(x)∈C[0,1],f(x)﹥0,证明积分不等式:.
设f’(lnx)=求f(x).
设齐次线性方程组其中ab≠0,n≥2,讨论a,b取何值时,方程组只有零解,有无穷多个解?在有无穷多个解时,求出其通解。
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是()。
设A为实对称矩阵,且A的特征值都大于零,证明:A为正定矩阵。
设A为3阶实对称矩阵,α1=(1,﹣1,﹣1)T,α2=(﹣2,1,0)T是齐次线性方程Ax=0的基础解系,且矩阵A-6E不可逆,则(Ⅰ)求齐次线性方程组(A-6E)x=0的通解;(Ⅱ)求正交变换x=Qy将二次型xTAx化为标准形;(Ⅲ)求(A-3E
设二次型f(x1,x2,x3)=XTAX=x12+5x22+x32-4x1x2+2x2x3,则对任意X≠0,均有()
四阶行列式的值等于
随机试题
正确选定公文的主送机关的原因。公文的主送机关的类型。
下列对东亚市场的自然环境描述错误的是()
论述如何培养班集体。
风寒外束,肺气壅遏,咳喘者。宜选用外感风寒湿邪,上半身疼痛者。宜选用
根据《中华人民共和国仲裁法》第17条的规定,仲裁协议应具备的有效要件包括()
甲国派遣的使馆馆长在乙国的任期内负有不干涉乙国内政的义务,以下哪项可说明馆长违反了他的义务?()
在“插入表格”对话框中,单击“向导”按钮,则弹出______,可以引导用户一步步建立。
从人民中积聚智慧的过程,实际上就是充分发扬民主,广泛______民智、努力______民心、造就坚实民意基础的过程。填入划横线部分最恰当的一项是()。
TokyoDailyNews
陈欧想要出国工作,他经过多方收集信息发现:每年通过雅思考试出国的人数是通过托福考试出国的人数的两倍,因此,他得出:雅思考试更容易通过。下面哪项如果为真,最能加强陈欧的结论?
最新回复
(
0
)