首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0, 证明:(Ⅰ)存在ξ∈(a,b),使得∫aξf(x)dx=0; (Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
设f(x)∈C[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0, 证明:(Ⅰ)存在ξ∈(a,b),使得∫aξf(x)dx=0; (Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
admin
2019-07-01
28
问题
设f(x)∈C[a,b]且f(x)为单调增函数,若f(a)<0,∫
a
b
f(x)dx>0,
证明:(Ⅰ)存在ξ∈(a,b),使得∫
a
ξ
f(x)dx=0;
(Ⅱ)存在η∈(a,b),使得∫
a
η
f(x)dx=f(η).
选项
答案
(Ⅰ)由积分中值定理,∫
a
b
f(x)dx=f(c)(b一a)>0,其中c∈[a,b],显然f(c)>0且c∈(a,b].因为f(a)f(c)<0,所以由零点定理,存在x
0
∈(a,c),使得f(x
0
)=0.再由f(x)单调增加得,当x∈[a,x
0
)时,f(x)<0;当x∈(x
0
,b]时,f(x)>0.令F(x)=∫
a
x
f(t)dt,显然F(x
0
)<0,F(B)>0,由零点定理,存在ξ∈(a,b),使得F(ξ)=0,即∫
a
ξ
f(x)dx=0. (Ⅱ)令φ(x)=e
-x
∫
a
x
f(t)dt,φ(a)=φ(ξ)=0,由罗尔定理,存在η∈(a,ξ)[*](a,b),使得φ’(η)=0,而φ’(x)=e
-x
[f(x)一∫
a
x
f(t)dt]且e
-x
≠0,故∫
a
η
f(x)dx=f(η).
解析
转载请注明原文地址:https://jikaoti.com/ti/wyQRFFFM
0
考研数学一
相关试题推荐
设A=,E为3阶单位矩阵.求满足AB=E的所有矩阵B.
设实二次型f(x1,x2,x3)=(x1—x2+x3)2+(x2+x3)2+(x1+ax3)2.其中a是参数.求f(x1,x2,x3)=0的解;
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT.
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为()T.求矩阵A;
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT.求可逆矩阵P,使P—1AP为对角阵A.
设有线性方程组 设a1=a3=k,a2=a4=一k(k≠0)时,β1=(一1,1,1)T,β2=(1,1,一1)T是方程组的两个解,写出此方程组的通解.
设方程组有解.(1)确定a、b的值;(2)求其导出组的基础解系,并用之表示原方程组的全部解.
设λ1,λ2分别为n阶实对称矩阵A的最小和最大特征值,X1、X2分别为对应于λ1和λn的特征向量,记f(X)=,X∈Rn,X≠0求二元函数f(x,y)=(x2+y2)的最大值,并求最大值点.
设S是平面x+y+z=4被圆柱面x2+y2=1截出的有限部分,则曲面积分的值是
随机试题
支气管扩张症好发于
采用核子密度湿度仪进行沥青混合料压实层密度测定前,应用()对取孔的试件进行标定。
施工单位应当按照审查合格的设计文件和()的要求进行施工,保证工程施工质量的专题论证。
招标人在评标委员会依法推荐的中标人以外选定中标人应被视为( )。
Excel中,函数RIGHT的必选参数有()。
从发展趋势看,商业银行实现的四大转变不包括()。
关于个人独资企业投资人及其债务责任的下列表述中,正确的是()。
根据消费税法律制度的规定,下列各项中,应按纳税人同类应税消费品的最高销售价格作为计税依据计征消费税的有()。
2015年一季度全国租赁贸易进出口总额较上一季度约:
领导经常给你吩咐专业以外的工作,你怎么办?
最新回复
(
0
)