首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. 求可逆矩阵P,使P—1AP为对角阵A.
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. 求可逆矩阵P,使P—1AP为对角阵A.
admin
2018-08-03
20
问题
设α=(a
1
,a
2
,…,a
n
)
T
为R
n
中的非零向量,方阵A=αα
T
.
求可逆矩阵P,使P
—1
AP为对角阵A.
选项
答案
A≠O.A
T
=A,1≤r(A)=r(αα
T
)≤r(α)=1,→r(A)=1,由于实对称矩阵的非零特征值的个数等于它的秩.故矩阵A只有一个非零特征值,而有n—1重特征值λ
1
=λ
2
=…=λ
n—1
=0.A的属于特征值0的线性无关特征向瞳可取为(设a
1
≠0): ξ
1
=(一[*],1,0,…,0)
T
,ξ
2
=(一[*],0,1,…,0)
T
,…,ξ
n—1
=(一[*],0,0,….1)
T
;属于特征值λ
n
=[*]a
i
2
的特征值为α,令矩阵P=[ξ
1
ξ
2
… ξ
n—1
α],则有P
—1
AP=diag(0,0,…,0,[*]a
i
2
)对角阵.其中,λ
n
的求法可利用特征值的性质:λ
1
+λ
2
+…+λ
n—1
+λ
n
=(A的主对角线元素之和)[*]a
i
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/nV2RFFFM
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f’+(a)>0.证明:存在ξ∈(a,b),使得f"(ξ)<0.
设A,B都是三阶矩阵,A=,且满足(A*)-1B=ABA+2A2z,则B=___________.
设A为n阶矩阵,A2=A,则下列成立的是().
设A为n阶矩阵,k为常数,则(kA)*等于().
设A,B都是n阶可逆矩阵,则().
设A,B为两个n阶矩阵,下列结论正确的是().
设f(x)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ—η=(ea+eb)[f’(η)+f(η)].
设A=,方程组AX=β有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
设A是n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
随机试题
正常垂体的最大高度根据不同的人群有不同标准,其中怀孕后期和产后妇女的垂体最大高度可达
Asthedirectormadeno______toourquarrel,Ithinkhehadforgivenus.
关于上市公司的要约收购,下列说法不正确的是:()
城市道路分为主干道、次干道、城市支路,一般干道间距为( )m,道路网密度为( )km/km2。
工程监理企业经营活动准则中,工程监理企业要做到公平,必须做到()。
《商业银行开办代客境外理财业务管理暂行办法》规定从事境外理财的商业银行应()。
学校行政体系中最基层的教育和教学行政组织单位是__________。
2013年中央经济工作会议于12月10日至13日在北京举行。会议确定2014年经济工作的总体要求是:全面贯彻落实党的十八大和十八届二中、三中全会精神,坚持稳中求进工作总基调,把()创新贯穿于经济社会发展各个领域各个环节,保持宏观经济政策连续性和稳定
设A=且AX+|A|E=A*+X,求x.
A、Itispartoftheirlocalheritage.B、Itisanattractionoftourists.C、Itistherevivalofmorals.D、ItisthemiracleofG
最新回复
(
0
)