首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)一1,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)一1,试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
admin
2019-02-26
48
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)一1,
试证:对任何满足0<k<1的常数k,存在点ξ∈(0,1),使得f’(ξ)=一k.
选项
答案
作辅助函数F(x)=f(x)+kx,则F(x)在[0,1]上连续,在(0,1)内可导,且F’(x)=f’(x)+k. 由f(0)=f(1)一1,[*]F(1)= 1+k,所以,[*]<F(0)<F(1). 由介值定理,存在点c∈[*]使得F(c)=F(0).因此,F(x)在[0,c]上连续,在(0,c)内可导,且F(0)=F(c).由洛尔定理,存在点ξ∈(0,c)[*](0,1),使得F’(ξ)=f’(ξ)+k=0,即f’(ξ)=一k.
解析
这是讨论函数在某点取定值的问题,可转化为导函数的存在性问题.
f’(ξ)=一k<=>f’(ξ)+k=0
<=>[f(x)+kx]’|
x=ξ
=0
<=>F(x)= f(x)+kx的导数在(0,1)内有零点.
于是,我们只要验证F(x)在[0,1]上或其子区间上满足洛尔定理的全部条件.
在本题的证明过程中综合运用了辅助函数法和辅助区间法,构造辅助函数的方法是:将待证的结论变形为f’(ξ)+k=0,即函数F(x)=f(x)+kx的导函数在(0,1)内存在零点的形式.然后取该函数作为用洛尔定理证明本题的辅助函数.由于F(x)在区间[0,1]的端点的值不相等,再由已知条件和介值定理构造使F(x)在端点值相等的辅助区间[0,c],c∈
然后应用洛尔定理得到要证明的结论.
转载请注明原文地址:https://jikaoti.com/ti/wNoRFFFM
0
考研数学一
相关试题推荐
曲线()
设n阶矩阵A的伴随矩阵为A*,证明:(Ⅰ)若|A|=0,则|A*|=0;(Ⅱ)|A*|=|A|n-1。
(2017年)设薄片型S是圆锥面被柱面z2=2x割下的有限部分,其上任一点的密度为记圆锥面与柱面的交线为C。(I)求C在xOy面上的投影曲线的方程;(Ⅱ)求S的质量m。
(2011年)设L是柱面方程x2+y2=1与平面z=x+y的交线,从z轴正向往z轴负向看去为逆时针方向,则曲线积分
(2002年)(I)验证函数满足微分方程y"+y′+y=ex:(Ⅱ)利用(I)的结果求幂级数的和函数。
(2006年)将函数展开成x的幂级数。
设随机变量X的概率密度为f(x)=对X进行独立重复的观测,直到第2个大于3的观测值出现时停止。记Y为观测次数。(Ⅰ)求Y的概率分布;(Ⅱ)求E(Y)。
从正态总体N(3.4,62)中抽取容量为n的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n至少应取多大?附表:标准正态分布表
某f家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,销售量分别为q1,q2,需求函数分别为q1=24-0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问f家如何确定两个市场的销售价格,能使其获得总利润最大?最大利
在椭球面χ2+2y2+z2=1上求一点使函数f(χ,y,z)=χ2+y2+z2在该点沿方向l=(1.-1.0)的方向导数最大.
随机试题
简述附带民事诉讼原告人的权利和义务。
什么是分部报告?分部报告包括哪几种类型?
溶菌酶的溶菌作用机制是()
依据我国标准,属于大型房屋建筑工程的有()。
甲向乙借用一台机床。借用期间,未经乙同意,甲以所有权人名义,将该机床按市场价转让给不知情的丙,双方签订了《机床转让合同》且钱货两清。根据物权法律制度和合同法律制度的规定,下列说法中,正确的是()。
A注册会计师负责审计甲公司2012年财务报表。在具体实施存货监盘程序的下列做法中,注册会计师不应该选择的是()。
县级以上人民政府公安机关,为预防和制止严重危害社会治安秩序的行为,可在一定的区域和时间,限制人员、车辆的通行或停留,必要时可以采取相应的交通管制措施。()
艾宾浩斯遗忘曲线说明遗忘的发展是不均衡的,其规律是先快后慢,呈负加速型。()
TED利差由欧洲美元LIBOR与美国国债利率之差构成,利差大幅上升说明()。
Whatisthemainreasonfortheproblem,accordingtotheman?
最新回复
(
0
)