)已知f(x)在[0,1]上连续可导,且f(1)=-1,证明:存在ξ∈[0.1],使得=-f’(ξ)-2.

admin2021-03-10  37

问题 )已知f(x)在[0,1]上连续可导,且f(1)=-1,证明:存在ξ∈[0.1],使得=-f’(ξ)-2.

选项

答案由拉格朗日中值定理得 f(x)-f(1)=f’(η)(x-1),其中x<η<1, 两边在[0,1]上积分得[*] 因为f’(x)∈c[0,1],所以f’(x)在[0,1]上取到最小值m和最大值M, 由M(x-1)≤f’(η)(x-1)≤m(x-1)得[*] 即[*] 由介值定理,存在ξ∈[0,1],使得-2[*]-2=f’(ξ), 故[*]dx=-f’(ξ)-2.

解析
转载请注明原文地址:https://jikaoti.com/ti/wFARFFFM
0

最新回复(0)