首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数z=x2+y2+2x+y在区域D={(x,y)|x2+y2≤1)上的最大值与最小值.
求函数z=x2+y2+2x+y在区域D={(x,y)|x2+y2≤1)上的最大值与最小值.
admin
2018-08-23
29
问题
求函数z=x
2
+y
2
+2x+y在区域D={(x,y)|x
2
+y
2
≤1)上的最大值与最小值.
选项
答案
由于x
2
+y
2
≤1是有界闭区域,z=x
2
+y
2
+2x+y在该区域上连续,因此一定能取到最大值与最小值. ①解方程组[*]得[*] 由于[*]不在区域D内,舍去. ②函数在区域内部无偏导数不存在的点. ③再求函数在边界上的最大值与最小值点,即求z=x
2
+y
2
+2x+y满足约束条件x
2
+y
2
=1的条件极值点.此时z=1+2x+y. 用拉格朗日乘数法,作拉格朗日函数L(x,y,λ)=1+2x+y+λ(x
2
+y
2
一1), 解方程组[*]得[*]或[*] 所有三类最值怀疑点仅有两个,由于[*]所以最小值[*]最大值[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/wBWRFFFM
0
考研数学二
相关试题推荐
已知n维向量组α1,α2……αn中,前n一1个线性相关,后n一1个线性无关,若令β=α1,α2……αn,A=(α1,α2……αn).试证方程组Ax=β必有无穷多组解,且其任意解(α1,α2……αn)T中必有an=1.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
若函数f(x)连续,且满足f(x).f(一x)=1,g(x)是连续的偶函数,试证明:
设f(x)具有二阶连续导数,且f(0)=1,f(2)=3,f’(2)=5,求∫01xf”(2x)dx.
判断函数的单调性.
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续.②f(x,y)在点(x0,y0)处两个偏导数连续.③f(x,y)在点(x0,y0)处可微.④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“”表示可由性质P推
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.
设z=esinxy,则dz=____________.
随机试题
试回答视频传输通道主要指标的相关问题。视频电平对图像质量的影响()。
某中级法院以抢劫罪判处黄某死刑,缓期二年执行,检察院提出抗诉。该省高级法院经二审认为被告人黄某不应判处死刑缓期二年执行,该省高级法院下列处理中正确的是:
按《建筑地基基础设计规范》(GB50007—2002)规定,桩身强度Q≤Apfcψc,其中ψc为基桩工作条件系数,该系数的取值与下列()无关。
确定产品组合的一般原则包括()。
判断新建高速公路路基干湿类型宜采用的指标是()。
下列组织的会计核算中。应采用权责发生制为基础的有()。
保持组织日常运转所需要的产品称为资本性需求。()
义务教育法对义务教育阶段学校收费的规定是()。
对于确定的风险价值系数,当一个投资者比较稳健时,应将风险价值系数定得()。
AnswerQuestions71to80byreferringtothefourarticlesonthetopic"Doesthefreemarketerodecharacter?"writtenbyfou
最新回复
(
0
)