首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上有二阶导数,且f′(χ)>0. (Ⅰ)证明至少存在一点ξ∈(a,b),使 ∫abf(χ)dχ=f(b)(ξ-a)+f(a)(b-ξ); (Ⅱ)对(Ⅰ)中的ξ∈(a,b),求
设f(χ)在[a,b]上有二阶导数,且f′(χ)>0. (Ⅰ)证明至少存在一点ξ∈(a,b),使 ∫abf(χ)dχ=f(b)(ξ-a)+f(a)(b-ξ); (Ⅱ)对(Ⅰ)中的ξ∈(a,b),求
admin
2022-10-09
26
问题
设f(χ)在[a,b]上有二阶导数,且f′(χ)>0.
(Ⅰ)证明至少存在一点ξ∈(a,b),使
∫
a
b
f(χ)dχ=f(b)(ξ-a)+f(a)(b-ξ);
(Ⅱ)对(Ⅰ)中的ξ∈(a,b),求
选项
答案
(Ⅰ)令φ(χ)=f(b)(χ-a)+f(a)(b-χ)-∫
a
b
f(χ)dχ(a≤χ≤b), 即证φ(χ)在(a,b)[*]零点.因f(χ)在[a,b]连续且[*]f(a)<f(χ)<f(b)(χ∈(a,b))且f(a)(b-a)<∫
a
b
f(χ)dχ<f(b)(b-a) φ(a)=f(a)(b-a)-∫
a
b
f(χ)dχ<0, φ(b)=f(b)(b-a)-∫
a
b
f(χ)dχ>0, 故由闭区间上连续函数的性质知存在ξ∈(a,b),使得φ(ξ)=0,即 ∫
a
b
f(χ)dχ=f(b)(ξ-a)+f(a)(b-ξ). (Ⅱ)先要得到[*]的表达式,为此先将上式改写成 ∫
a
b
f(χ)dχ=f(b)(ξ-a)+f(a)[(b-a)-(ξ-a)], 从而[*] 于是将b看作变量,对右端分式应用洛必达法则即得 [*] 分子、分母同除b-a得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/vfhRFFFM
0
考研数学二
相关试题推荐
微分方程的通解是_______.
设f(x,y)可微,f(1,2)=2,f’x(1,2)=3,f’y(1,2)=4,φ(x)=f[x,f(x,2x)],则φ’(1)=______
矩阵的非零特征值是_________.
设f(x,y)可微,且f’1(-1,3)=-2,f’2(-1,3)=1,令,则dz|(1,3)=______
设f(x,y)连续,且f(x,y)=x+yf(μ,ν)dμdν,其中D是由y=,x=1,y=2所围成的区域,则f(x,y)=________。
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P—1AP=______。
以y=cos2x+sin2x为一个特解的二阶常系数齐次线性微分方程是_________.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤C.
设则
[2014年]设f(x)=,x∈[0,1].定义函数列:f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),…记Sn是曲线y=fn(x),直线x=1及x轴所围平面图形的面积,求极限nSn.
随机试题
软件设计中模块划分应遵循的准则是()。
用适当的知觉知识解释立体电影的原理。
封隔器是在()封隔油层,进行井下分注分采的重要工具。
政府及其财政管理部门对财政收入计划的编制、审查、执行和核算等行使职能的过程,叫做【】
关于子宫内膜癌的CT表现,下列哪项不正确
拆除的模板在堆放时,不能过于靠近楼层边沿,应满足()的要求。
《幼儿园教育指导纲要(试行)》指出;教师的态度和()应有助于形成安全、温馨的心理环境。
1925年3月20日,俄国革命家马林在一篇文章中说:“孙中山在法文月刊《社会主义运动》发表了一篇文章,阐述中国革命的性质,提到他不期望资本主义式的繁荣,而希望看到‘新中国’是一个‘社会主义的中国’。”这则材料()。
某单位要从8名职员中选派4人去总公司参加培训,其中甲和乙2人不能同时参加。问共有多少种选派方法?
【S1】【S6】
最新回复
(
0
)