设二次型f(x1,x2,x3)=xTAX,A的主对角线上元素之和为3,又AB+B=0,其中 (1)求正交变换X=QY将二次型化为标准形; (2)求矩阵A.

admin2019-01-23  20

问题 设二次型f(x1,x2,x3)=xTAX,A的主对角线上元素之和为3,又AB+B=0,其中

(1)求正交变换X=QY将二次型化为标准形;
(2)求矩阵A.

选项

答案(1)由AB+B=0得(E+A)B=0,从而r(E+A)+r(B)≤3, 因为r(B)=2,所以r(E+A)≤1,从而λ=一1为A的特征值且不低于2重, 显然λ=一1不可能为三重特征值,则A的特征值为λ12=一1,λ3=5. 由(E+A)B=0得B的列组为(E+A)X=0的解, [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/vc1RFFFM
0

相关试题推荐
最新回复(0)