A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A一aE)(A一bE)=0. (2)r(A一aE)+r(A一bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.

admin2017-08-07  27

问题 A是n阶矩阵,数a≠b.证明下面3个断言互相等价:
    (1)(A一aE)(A一bE)=0.
    (2)r(A一aE)+r(A一bE)=n.
    (3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.

选项

答案不妨设a和b都是A的特征值.(因为如果a不是A的特征值,则3个断言都推出A=bE.如果b不是A的特征值,则3个断言都推出A=aE.) (1)[*](2) 用关于矩阵的秩的性质,由(A—aE)(A一bE)=0.得到: r(A一aE)+r(A一bE)≤n, r(A一aE)+r(A一bE)≥r((A一aE)一(A一bE))=r((b一a)E)=n, 从而r(A一aE)+r(A一bE)=n. (2)[*](3) 记ka,kb分别是a,b的重数,则有 ka≥n—r(A一aE)① kb≥n一r(A一bE)② 两式相加得n≥ka+kb≥n—r(A一aE)+n—r(A一bE)=n,于是其中“≥”都为“=”,从而①和②都是等式,并且ka+kb=n. ka+kb=n,说明A的特征值只有a和b,它们都满足(λ一a)(λ一b)=0. ①和②都是等式,说明A相似于对角矩阵. (3)[*](1) A的特征值满足(λ一a)(λ一b)=0,说明A的特征值只有a和b.设B是和A相似的对角矩阵,则它的对角线上的元素都是a或b,于是(B一aE)(B一bE)=0.而(A一aE)(A一bE)相似于(B一aE)(B一bE),因此(A一aE)(A一bE)=0.

解析
转载请注明原文地址:https://jikaoti.com/ti/5TVRFFFM
0

最新回复(0)