首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A一aE)(A一bE)=0. (2)r(A一aE)+r(A一bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价: (1)(A一aE)(A一bE)=0. (2)r(A一aE)+r(A一bE)=n. (3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
admin
2017-08-07
27
问题
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:
(1)(A一aE)(A一bE)=0.
(2)r(A一aE)+r(A一bE)=n.
(3)A相似于对角矩阵,并且特征值满足(λ一a)(λ一b)=0.
选项
答案
不妨设a和b都是A的特征值.(因为如果a不是A的特征值,则3个断言都推出A=bE.如果b不是A的特征值,则3个断言都推出A=aE.) (1)[*](2) 用关于矩阵的秩的性质,由(A—aE)(A一bE)=0.得到: r(A一aE)+r(A一bE)≤n, r(A一aE)+r(A一bE)≥r((A一aE)一(A一bE))=r((b一a)E)=n, 从而r(A一aE)+r(A一bE)=n. (2)[*](3) 记k
a
,k
b
分别是a,b的重数,则有 k
a
≥n—r(A一aE)① k
b
≥n一r(A一bE)② 两式相加得n≥k
a
+k
b
≥n—r(A一aE)+n—r(A一bE)=n,于是其中“≥”都为“=”,从而①和②都是等式,并且k
a
+k
b
=n. k
a
+k
b
=n,说明A的特征值只有a和b,它们都满足(λ一a)(λ一b)=0. ①和②都是等式,说明A相似于对角矩阵. (3)[*](1) A的特征值满足(λ一a)(λ一b)=0,说明A的特征值只有a和b.设B是和A相似的对角矩阵,则它的对角线上的元素都是a或b,于是(B一aE)(B一bE)=0.而(A一aE)(A一bE)相似于(B一aE)(B一bE),因此(A一aE)(A一bE)=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/5TVRFFFM
0
考研数学一
相关试题推荐
(2011年试题,三)设随机变量X与y的概率分布本别为且P(X2=Y2)=1求X与y的相关系数ρxy
(2006年试题,22)设随机变量X的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数.求
(1997年试题,九)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.没X为途中遇到红灯的次数,求随机变最X的分布律、分布函数和数学期望.
(2004年试题,一)设随机变量X服从参数为λ的指数分布,则=__________.
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.求矩阵B.
(2007年试题,4)设函数f(x)在x=0处连续,下列命题错误的是()•
假设每次试验只有成功与失败两种结果,并且每次试验的成功率都是p(0
随机试题
渗氮层因较厚,工件经渗氮后仍能精车或粗磨。()
细胞的结构包括
下列哪项不是肾衰竭进展的共同机制
施工项目招标投标过程中,某投标单位在投标截止日期前提交了投标文件和投标保证金。该投标单位中标后拒绝与业主签订施工合同,业主没收了其投标保证金,该行为说明()。
在下列关于印花税的表述中,正确的是()。
“让学校的每一面墙壁都开口说话”“让学校的一草一木、一砖一石都发挥教育影响”体现了何种德育方法()
如遇非常情况,不能进行下届选举,由全国人大常委会以全体委员的()以上多数通过,可以推迟下届全国人大代表选举,延长本届任期。
超市中销售的苹果常常留有一定的油脂痕迹,表面显得油光滑亮。牛师傅认为,这是残留在苹果上的农药所致,水果在收摘之前都喷洒了农药,因此,消费者在超市购买水果后,一定要清洗干净方能食用。以下哪项最可能是牛师傅看法所依赖的假设?
内存按字节编址,地址从0A4000H到0CBFFFH。若用存储容量为32K×8bit的存储器芯片构成该内存,至少需要(3)。
Itwasamomentmostbusinessexecutiveswouldpausetosavor:latelastyear,GermansportinggoodspioneerAdidaslearnedthat
最新回复
(
0
)