首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组a1,a2…,as(3≤s≤n)线性无关的充要条件是 ( )
n维向量组a1,a2…,as(3≤s≤n)线性无关的充要条件是 ( )
admin
2015-08-17
49
问题
n维向量组a
1
,a
2
…,a
s
(3≤s≤n)线性无关的充要条件是 ( )
选项
A、存在一组全为零的数k
a
,k
2
,…,k
s
,使k
1
a
1
+k
2
a
2
+…+k
s
a
s
=0
B、a
1
,a
2
…,a
s
中任意两个向量都线性无关
C、a
1
,a
2
…,a
s
中任意一个向量都不能由其余向量线性表出
D、存在一组不全为零的数k
a
,k
2
,…,k
s
,使k
1
a
1
+k
2
a
2
+…+k
s
a
s
=0
答案
C
解析
可用反证法证明之.必要性:假设有一向量,如α
s
可由α
1
,α
2
……α
s-1
线性表出,则α
1
,α
2
……α
s
线性相关,这和已知矛盾,故任一向量均不能由其余向量线性表出,充分性:假设α
1
,α
2
……α
s
线性相关
至少存在一个向量可由其余向量线性表出,这和已知矛盾,故α
1
,α
2
……α
s
线性无关.A对任何向量组都有0α
1
+0α
2
+…+0α
s
=0的结论.B必要但不充分,如α
1
=[0,1,0]
T
,α
2
=[1,1,0]
T
,α
3
=[1,0,0]
T
任两个线性无关,但α
1
,α
2
,α
3
线性相关.D必要但不充分.如上例α
1
+α
2
+α
3
≠0,但α
1
,α
2
,α
3
线性相关.
转载请注明原文地址:https://jikaoti.com/ti/uqPRFFFM
0
考研数学一
相关试题推荐
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x-3e2x为特解,求该微分方程.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1,讨论向量组β1,β2,βs的线性相关性.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
设向量组α1=(1,3,2,0)T,α2=(7,0,14,3)T,α3=(2,一1,0,1)T,α4=(5,1,6,2)T,α5=(2,一1,4,1)T,求该向量组的秩和一个极大线性无关组,并把不是极大线性无关组的向量用此极大线性无关组线性表示.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα2,…,Ak-1α是线性无关的.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
随机试题
幼儿园卫生器具热水使用水流。以下哪条错误?[2007年第58题][2008年第57题]
闭经的原因按病变部位分为___________性闭经、垂体性闭经、卵巢性闭经和子宫性闭经。
女性,55岁,国家公务员,30年来因丈夫(高级工程师)有外遇,夫妻感情不佳,总想离婚,但又总舍不得孩子,又怕丢面子,来到心理咨询门诊,想问心理咨询师,离婚还是不离婚好?此时心理咨询师最应注意的原则是
作为项目决策管理层次在完工阶段进行的决策咨询业务包括()。
反映企业财务状况的会计要素是( )。
进出口货物收发货人所属的报关员离职的,应当自报关员离职之日起______日内向海关报告并注销其报关员证件。
(2020年)下列各项关于增值税会计处理的表述中,正确的有()。
抽象表现主义
敦煌
Twiceayear,inspringandautumn,London’sfashionistasgo【C1】______atthesecondoftheworld’s"bigfour"fashionweeks.Fro
最新回复
(
0
)