设A为n阶矩阵,若Ak+1≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.

admin2018-01-23  63

问题 设A为n阶矩阵,若Ak+1≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.

选项

答案令l0α+l1Aα+…+lk-1Ak-10(*)(*)两边同时左乘Ak-1得l0Ak-1=0,因 为Ak-1≠0,所以l0=0;(*)两边同时左乘Ak-2得l1Ak-1α=0,因为Ak-1α≠0,所以l1 =0,依次类推可得l2=…=lk-1=0,所以α,Aα,…,Ak-1α线性无关.

解析
转载请注明原文地址:https://jikaoti.com/ti/uWKRFFFM
0

相关试题推荐
最新回复(0)