设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是x一a的n阶无穷小量.求证:f(x)的导函数f’(x)当x→a时是x一a的n一1阶无穷小量.

admin2017-05-10  40

问题 设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是x一a的n阶无穷小量.求证:f(x)的导函数f’(x)当x→a时是x一a的n一1阶无穷小量.

选项

答案由题设f(x)在x=a处n阶可导且[*]知,把f(x)在x=a的带皮亚诺余项的n阶泰勒公式代入即得 [*] 从而f(a)=f’(a)=fn(a)=…=f(n-1)(a)=0,f(n)(a)=n!A≠0.设g(x)=f’(x),由题设知g(x)在x=a处n一1阶可导,且 g(a)=f’(n)=0,g’(a)=f’’(a)=0,…,g(n-2)(a=f(n-1)(a)=0, g(n-1)(a)=f(n)(a)=n!A≠0. 由此可得f’(x)=g(x)在x=a处带皮亚诺余项的n一1阶泰勒公式为 [*] 故f’(x)当x→a时是x—a的n一1阶无穷小量.

解析
转载请注明原文地址:https://jikaoti.com/ti/uKSRFFFM
0

最新回复(0)