首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零实方阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明|A|≠0.
设A为n阶非零实方阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明|A|≠0.
admin
2016-04-11
37
问题
设A为n阶非零实方阵,A
*
是A的伴随矩阵,A
T
是A的转置矩阵,当A
*
=A
T
时,证明|A|≠0.
选项
答案
由公式AA
T
=|A|E,得AA
T
=|A|E,若|A|=0,则有AA
T
=O,设A的第i个行向量为α
i
(i=1,2,…,,z),则由AA
T
的第i行第i列处的元素为零,有α
i
T
α
i
=‖α
i
‖=0,(i=1,2,…,n),即α
i
=0,i=1,2,…,n,于是A=0,这与已知A为非零阵矛盾,故|A|≠0.
解析
本题主要考查伴随矩阵的概念和性质.注意A
*
的第i行第j列处元素为A
ij
,伴随矩阵的定义及公式AA
*
=A
*
A=|A|E是处理逆矩阵及伴随矩阵有关问题的基本出发点,必须深刻理解、熟练掌握.例如,当|A|≠0时,由上述公式可得几个常用的结果:①A
—1
=
;③|A
*
|=|A|
N—1
(当|A|=0时可证明|A
*
|=0,故此公式对任何n(n≥2)阶方阵A恒成立);④(A
*
)
*
=|A|
n—2
A(由(A
*
)
—1
=
,于是有(A
*
)
*
=|A|
n—2
A).
还需指出的是,满足本题给定条件的实矩阵A,实际上是行列式为1的正交矩阵.事实上,由已知的关系式A
T
=A
*
两端取行列式,得|A|=|A
T
|=|A
*
=|A|
n—1
,因此|A|的取值范围是{0,1,一1}。
转载请注明原文地址:https://jikaoti.com/ti/uEPRFFFM
0
考研数学一
相关试题推荐
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1,证明:|f(x)|≤1.
设函数其中g(x)二阶连续可导,且g(0)=1.求f’(x).
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零,证明:f(x)在(a,+∞)内至少有一个零点。
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2).
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0,证明:方程f"(x)-f(x)=0在(0,1)内有根。
设f(x)=在x=1处可微,则a=________,b=________.
设,3阶矩阵B的秩为2,且r(AB)=1,则齐次方程组A*x=0的线性无关解的个数为()
微分方程y"+y=x+cosx的特解形式为()
设F(x)是f(x)在区间(0,1)内的一个原函数,则F(x)+f(x)在区间(0,1)内().
试求函数f(x,y)=4x2-6x+3y+1在平面区域D={(x,y)|x2+y2≤a2,a>0)上的平均值.
随机试题
有如下程序#include<stdio.h>voidconvert(intd){if(d<10){printf(’’%d’’,d);convert(d+1);}}
茶艺是一种综合性的生活艺术,但对“茶艺”的_________诠释究竟是什么,却众说纷纭,即使开茶艺馆的人,也多半_________。填入画横线部分最恰当的一项是:
经清洗消毒后达到无菌要求是指
在某工程双代号网络计划中,工作M的持续时间及开始节点和完成节点的最早时间与最迟时间如下图所示,刚工作M的总时差为( )。
《娱乐场所管理条例》规定:歌舞娱乐场所设置的包厢、包间应当安装展现室内整体环境的透明门窗,并不得有内锁装置。()
被称为“中国三大瓷都”的是()
个人独资企业,是指依法设立,由一个自然人投资,财产为投资人个人所有,投资人以其个人财产对企业债务承担无限责任的经营实体。根据上述定义,下列选项中叙述正确的是()。
判断下列句子是否符合普通话语法规范。我们怀着无比崇敬的心情聆听了艺术大师的精彩讲座。(中山大学2014)
()是从二维表列的方向进行的运算。
Dearsir,ThankyouforyourletteronMarch15.Weknowthatyouwanttoorder10000piecesofRainbowRaincoatModel2.
最新回复
(
0
)