首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)内有定义,x0≠0是函数f(x)的极大值点,则( ).
设函数f(x)在(-∞,+∞)内有定义,x0≠0是函数f(x)的极大值点,则( ).
admin
2013-08-30
32
问题
设函数f(x)在(-∞,+∞)内有定义,x
0
≠0是函数f(x)的极大值点,则( ).
选项
A、x
0
必是函数f(x)的驻点
B、-x
0
必是函数-f(-x)的最小值点
C、-x
0
必是函数-f(-x)的极小值点
D、对一切x
0
都有f(x)≤f(x
0
)
答案
C
解析
因为“函数f(x)的极值点不一定是函数f(x)的驻点”,如f(x)=3-|x-1|
在x
0
=1点处取得极大值f(1)=3,但x
0
=1点还并不是函数f(x)的驻点.(A)不对.
又“函数f(x)的极值点不一定是函数f(x)的最值点”,如f(x)=x
3
-6x
2
+9x-1,因为f(x)在(-∞,+∞)内没有最大值,但却在x
0
=1点处取得极大值f(1)=3.而当x>4时,都有f(x)>f(x
0
).(D)不对,至于(B),我们在否定(D)时,实际上已经得到结论了.仍然可举(D)中用过的例子为反例.因此选(C).
转载请注明原文地址:https://jikaoti.com/ti/tncRFFFM
0
考研数学一
相关试题推荐
(2007年试题,二)设函数则Y(n)(0)=______.
(2006年试题,23)设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解.(I)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
(97年)设在闭区间[a,b]上f(x)>0,f’(x)<0.f"(x)>0.记S1=∫abf(x)dx,S2=f(b)(b一a),S3=[f(a)+f(b)](b一a).则
设z=z(x,y)是由方程f(y-x,yz)=0所确定的隐函数,其中函数f对各个变量具有连续的二阶偏导数,求
设4维向量空间V的两个基分别为(Ⅰ)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3+α4,β3=α3+α4,β4=α4,求由基(Ⅱ)到基(Ⅰ)的过渡矩阵;
试就常数k的不同取值,讨论方程xe-x-k=0的实根的个数.
计算,其中Ω:由yOz平面上的区域D绕z轴旋转而成的空间区域,而D由曲线z=2y-1,y2+z2=1(y≥0,z≥0),y=0,z=0所围成.
设x的概率密度为f(x)=,F(x)是x的分布函数,求Y=F(x)的分布函数和概率密度。
某厂生产某种产品,正常生产时,该产品的某项指标服从正态分布N(50,3.82),在生产过程中为检验机器生产是否正常,随机抽取50件产品,其平均指标为(设生产过程中方差不改变),在显著性水平为α=0.05下,检验生产过程是否正常.
随机试题
备餐设备是供烹调前菜点配份使用的设备。()
根据内容性质,函大体分为四类,其中不包括()
监理企业规章制度包括( )。
开槽过程中,要经常检查槽帮是否稳定,特别是在雨季或地下水位较高时,一经发现(),必须立即停止施工,进行处理。
()古称荣州,毗邻恐龙故乡自贡市,因此这一地区亦称“龙都”。
文稿审核是文稿()前的最后一道文字工序。
关于教育的个体功能和社会功能表述正确的是()。
设A,B,C均是3阶矩阵,满足AB=2B,CAT=2C其中证明:对任何3维向量ξ,A100ξ与ξ必线性相关.
界面元素的布局,获取测试数据的考虑不包括______。
Susan;I’msogladtoseeyou,David,【K1】______hasbeensuchalongtime.Howareyou?David;I’mfine,andyou?Susan:I’mj
最新回复
(
0
)