首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
admin
2019-03-23
31
问题
设η
1
,η
2
,η
3
,η
4
是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
选项
A、η
1
—η
2
,η
2
+η
3
,η
3
—η
4
,η
4
+η
1
B、η
1
+η
2
,η
2
+η
3
+η
4
,η
1
—η
2
+η
3
C、η
1
+η
2
,η
2
+η
3
,η
3
+η
4
,η
4
+η
1
D、η
1
+η
2
,η
2
—η
3
,η
3
+η
4
,η
4
+η
1
答案
D
解析
由已知条件,Ax=0的基础解系是由四个线性无关的解向量构成的,而B选项中仅三个解向量,不符合要求,故B选项不是基础解系。
选项A和选项C中,都有四个解向量,但因为
(η
1
—η
2
)+(η
2
+η
3
)—(η
3
—η
4
)—(η
4
+η
1
)=0,
(η
1
+η
2
)—(η
2
+η
3
)+(η
3
+η
4
)—(η
4
+η
1
)=0,
说明A、C两项中的向量组均线性相关,因而A、C两项也不是基础解系。
对于D选项中的向量,
(η
1
+η
2
,η
2
—η
3
,η
3
+η
4
,η
4
+η
1
)=(η
1
,η
2
,η
3
,η
4
)
而
=2≠0,
知η
1
+η
2
,η
2
—η
3
,η
3
+η
4
,η
4
+η
1
线性无关,又因η
1
+η
2
,η
2
—η
3
,η
3
+η
4
,η
4
+η
1
均是Ax=0的解,且解向量个数为4,所以D选项是基础解系,故选D。
转载请注明原文地址:https://jikaoti.com/ti/tKLRFFFM
0
考研数学二
相关试题推荐
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
设A是m阶正定矩阵,B是m×n实矩阵,证明:BTAB正定r(B)=n.
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
设y=∫0χdt+1,求它的反函数χ=φ(y)的二阶导数及φ〞(1).
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
随机试题
超文本中的超链可以指向文字,也可以指向图形、图像、声音或动画节点。()
押手的作用为()
患者,胸痛,查体可闻及心包摩擦音,该摩擦音的特点不包括
下列关于法的运行的说法正确的是:()
材料的耐磨性能与以下哪种因素无关?
某工艺性空调房间尺寸为6.0m×4.0m×3.0m,要求恒温为(20±0.5)℃,房间冷负荷为1200W,湿负荷为0,则送风量为_______m3/h时能满足气流组织要求。
下列选项中,不适用《政府采购法》的有()。
【2009年典型真题】银行会计人员的任用应坚持回避制度,下列不属于回避对象的是()。
哲学是系统化、理论化的世界观和方法论。世界观和方法论二者之间的关系是()
A、Onlyifwehavemuchincommon.B、Onlyifweknowourfriends’mistakes.C、Onlyifwetreatourdisagreementswisely.D、Onlyif
最新回复
(
0
)