首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试用配方法化二次型 f(x1,x2,x3)=2x12+3x22+x32+4x1x2-4x1x3-8x2x3 为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及止、负惯性指数。
试用配方法化二次型 f(x1,x2,x3)=2x12+3x22+x32+4x1x2-4x1x3-8x2x3 为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及止、负惯性指数。
admin
2018-01-26
42
问题
试用配方法化二次型
f(x
1
,x
2
,x
3
)=2x
1
2
+3x
2
2
+x
3
2
+4x
1
x
2
-4x
1
x
3
-8x
2
x
3
为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及止、负惯性指数。
选项
答案
由于f中含有x
1
的平方项,故先把含x
1
的项进行配方,然后再把含x
2
的项进行配方,依次配方即可。即 f(x
1
,x
2
,x
3
)=2(x
1
2
+2x
1
x
2
-2x
1
x
3
)+3x
2
2
+x
3
2
-8x
2
x
3
=2(x
1
+x
2
-x
3
)
2
+x
2
2
-4x
2
x
3
2
-x
3
2
=2(x
1
+x
2
-x
3
)
2
+(x
2
-x
3
)
2
-5x
3
2
。 令 [*] 则把二次型f化成了标准形 f(x
1
,x
2
,x
3
)=2y
1
2
+y
2
2
-5y
3
2
。 所用的可逆线性变换矩阵为C=[*],可逆变换为x=Cy。 由以上结论可知,二次型f的规范形为f=z
1
2
+z
2
2
-z
3
2
,二次型的秩R(f)=3,正惯性指数为2,负惯性指数为1。
解析
转载请注明原文地址:https://jikaoti.com/ti/sQVRFFFM
0
考研数学一
相关试题推荐
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(
[*]
求二阶常系数线性微分方程y’’+λy’=2x+1的通解,其中λ为常数.
设n阶矩阵A的元素全是1,则A的n个特征值是__________.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1一α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
如果A是一个r行n列的其秩为r的矩阵,A的所有行向量形成一个齐次线性方程组的基础解系,而B是一个任意r阶可逆矩阵,则矩阵BA的所有行向量也形成该齐次线性方程组的基础解系。
已知三元二次型XTAX的平方项系数全为0,设α=[1,2,-1]T且满足Aα=2α。若A+kE正定,求k的取值。
已知三元二次型XTAX的平方项系数全为0,设α=[1,2,-1]T且满足Aα=2α。求该二次型表示式;
随机试题
放疗技师摆位时需要反复核对的项目不正确的是
胆郁痰扰证最常见的原因是
下列关于3/4冠牙体预备的描述,正确的是
痰停于哪个部位可引起眩晕
合同变更属于对原有合同的实质性变更时,应以( )的方式变更。
我国的货币当局概览是简化的中央银行资产负债表,下列项目中属于资产方的是()。
【2014年】下列各项中,不会导致非抽样风险的是()。
某地政府对当地妇女儿童发展规划(2010~2020)进行了终期评估,发现在“儿童与教育”领域,性别平等课程进校园工作做得不尽如人意。在整改中,当地教育行政部门组建了工作小组,开发出性别平等课程,在中小学开设专门课堂,引入专业社会工作力量开展了丰富多彩的性别
Dopeoplegethappierormorefoul-temperedastheyage?Stereotypesofirritableneighbors【B1】______,scientistshavebeentryi
AlmosteverydaythemediadiscoversanAfricanAmericancommunityfightingsomeformofenvironmentalthreatfromlandfills,ga
最新回复
(
0
)