首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题: ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(Ⅰ)的解。 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题: ①(Ⅰ)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(Ⅰ)的解; ③(Ⅰ)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(Ⅰ)的解。 以上命题中正确的是( )
admin
2018-05-17
54
问题
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)A
n
x=0和(Ⅱ)A
n+1
x=0,现有四个命题:
①(Ⅰ)的解必是(Ⅱ)的解;
②(Ⅱ)的解必是(Ⅰ)的解;
③(Ⅰ)的解不是(Ⅱ)的解;
④(Ⅱ)的解不是(Ⅰ)的解。
以上命题中正确的是( )
选项
A、①②。
B、①④。
C、③④。
D、②③。
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(1)的解,则α必是(2)的解,可见命题①正确。
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,Aα,A
2
α,…,A
n
α,一方面有:
若kα+k
1
Aα+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边得kA
n
α=0。由A
n
α≠0可知必有k=0。类似地可得k
1
=k
2
=…=k
n
=0。因此,α,Aα,A
2
α,…,A
n
α线性无关。
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾。故A
n+1
α=0时,必有A
2
α=0,即(2)的解必是(1)的解。因此命题②正确。
所以应选A。
转载请注明原文地址:https://jikaoti.com/ti/C1dRFFFM
0
考研数学二
相关试题推荐
设函数f(x)在(-∞,+∞)内有定义,x0≠0是函数f(x)的极大值点,则().
∫x3ex2dx_________.
改变积分次序=__________.
微分方程y’’-y=ex+1的一个特解应具有形式(式中a、b为常数)为().
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1,试证必存在ξ∈(0,3),使f’(ξ)=0.
设y=f(x)是满足微分方程y’’+y’-ex=0的解,且f’(x0)=0,则f(x)在().
(2002年试题,十二)已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
(1998年试题,九)设有曲线过原点作其切线,求由此盐线、切线及x轴围成的平面图形绕x轴旋转一周所得到的旋转体的表面积.
有一平底容器,其内侧壁是由曲线x=ψ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图1—6—1),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体).
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
随机试题
议会实行两院制的国家有()
心悸与哪项同见,对诊断心阴虚证最有意义
A.严格隔离B.消化道隔离C.保护性隔离D.呼吸道隔离E.血液-体液隔离流行性感冒患者应采取
神经纤维瘤病肝豆状变性
根据《税收征收管理法》的规定,会计账簿、会计报表、记账凭证、完税凭证及其他纳税资料应当保存( )。
报检单位对本单位报检员的报检行为不承担法律责任。()
为了防止通货膨胀抬头,A国中央银行提高了再贴现率,国际金融市场随之作出反应。A国货币的利率由2.5%上升到3%,即期汇率变为1单位B国货币兑1.2A国货币,B国货币的利率保持5%不变。请根据以上资料,回答下列问题:根据购买力平价理论,通胀率高
简述选题的基本要求。
(2008上软评)通常测试用例很难100%覆盖测试需求,因为______。①输入量太大;②输出结果太多;③软件实现途径多;④测试依据没有统一标准
软件开发离不开系统环境资源的支持,其中必要的测试数据属于
最新回复
(
0
)