设函数f(x)≥0在[1,+∞)上连续,若曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形的面积为S(t)=t2f(t)一1.

admin2021-08-02  37

问题 设函数f(x)≥0在[1,+∞)上连续,若曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形的面积为S(t)=t2f(t)一1.

选项

答案曲线y=y(x)在点(x,y)处的切线方程为Y—y=y’(X—x),令X=0,得到切线在y轴上的截距为 xy=y一xy’,即xy’=y(1一x). 此为一阶可分离变量的方程,于是[*],两边积分有ln|y|=ln|C1x|—x,得到y=[*],又y(1)=e—1,故C2=1,于是曲线方程为[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/sKlRFFFM
0

最新回复(0)