设f(x)在(0,+∞)三次可导,且当∈(0,+∞)时 |f(x)|≤M0,|f’’’(x)|≤M3, 其中M0,M3为非负常数,求证F’’(X)在(0,+∞)上有界.

admin2018-06-27  72

问题 设f(x)在(0,+∞)三次可导,且当∈(0,+∞)时
    |f(x)|≤M0,|f’’’(x)|≤M3
其中M0,M3为非负常数,求证F’’(X)在(0,+∞)上有界.

选项

答案分别讨论x>1与0<x≤1两种情形. 1)当x>1时考察二阶泰勒公式 f(x+1)=f(x)+f’(x)+[*](x<ξ<x+1), f(x-1)=f(x)-f’(x)+[*]f’’’(η)(x-1<η<x), 两式相加并移项即得 f’’(x)=f(x+1)+f(x-1)-2f(x)+[*][f’’’(η)-2f’’’(ξ)], 则当x>1时有|f’’(x)|≤4M0+[*]M3. 2)当0<x≤1时对f’’(x)用拉格朗日中值定理,有 f’’(x)=f’’(x)-f’’(1)+f’’(1)=f’’’(ξ)(x-1)+f’’(1),其中ξ∈(x,1). [*]|f’’(x)|≤|f’’’(ξ)||x-1|+|f’’(1)|≤M3+|f’’(1)|(x∈(0,1]). 综合即知f’’(x)在(0,+∞)上有界.

解析
转载请注明原文地址:https://jikaoti.com/ti/rsdRFFFM
0

最新回复(0)