首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设A,B均是2阶方阵,A的主对角元素之和称为A的迹,记成tr(A). 证明tr(AB)=tr(BA); (Ⅱ)设A,X均是2阶方阵,E是2阶单位矩阵,讨论矩阵方程AX-XA=E是否有解,说明理由.
(Ⅰ)设A,B均是2阶方阵,A的主对角元素之和称为A的迹,记成tr(A). 证明tr(AB)=tr(BA); (Ⅱ)设A,X均是2阶方阵,E是2阶单位矩阵,讨论矩阵方程AX-XA=E是否有解,说明理由.
admin
2019-01-24
25
问题
(Ⅰ)设A,B均是2阶方阵,A的主对角元素之和称为A的迹,记成tr(A).
证明tr(AB)=tr(BA);
(Ⅱ)设A,X均是2阶方阵,E是2阶单位矩阵,讨论矩阵方程AX-XA=E是否有解,说明理由.
选项
答案
(Ⅰ) [*] 得证tr(AB)=tr(BA). (Ⅱ)法一 利用(Ⅰ)的结论,因tr(AX-XA)=tr(AX)-tr(XA)=0≠tr(E)=2,故AX-XA=E无解. 法二 [*] 从而[*]两式相加得0=2是矛盾方程. 故原矩阵方程无解.
解析
转载请注明原文地址:https://jikaoti.com/ti/qC1RFFFM
0
考研数学一
相关试题推荐
设A=已知线性方程组Ax=b存在2个不同的解,(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解.
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
设X1,X2,…,Xm,Y1,Y2,…,Yn独立.Xi~N(a,σ2),i=1,2,…,m,Yi~N(b,σX1,X2,…,Xn),i=1,2,…,n,,而α,β为常数.试求的分布.
考虑一个试验中,一位机械师从一批零件中逐个拿出零件,直到拿到符合要求的零件为止.拿出零件不符合要求记为F,符合要求记为S.(1)写出这一试验的样本空间;(2)记X=试验终止时取出的零件个数,写出随机变量X作为样本空间上的函数的表达式.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα1=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
已知随机变量X的概率密度(I)求分布函数F(x);(II)若令Y=F(X),求Y的分布函数FY(y)·
设0<x1<1,xn+1=(n=1,2,…).求证:{xn}收敛,并求其极限.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f’’(ξ)=0.
计算下列列积分:
设f(x)二阶连续可导,且曲线积分∫[3f’(x)一2f(x)+xe2x]ydx+f’(x)dy与路径无关,求f(x).
随机试题
下列有关急性暴发性流脑的描述中,哪项是锌误的()(1992年)
A、酒炙B、盐炙C、蒸法D、煮法E、醋炙何首乌、黄精炮制的适宜方法是
货币时间价值原则的首要应用是“早收晚付”观念。()
在( )家庭教养模式下,父母对孩子漠不关心,放任自流,培养出的孩子往往自私,缺乏责任感,并表现出极高的问题行为发生率。
阅读下面材料,回答问题。材料一德意志帝国首相俾斯麦说:“我们位于欧洲中部。我们至少有三条会遭到进攻的路线,而法国却只有一条东部的边界,俄国只有在西部的边界上有遭到进攻的可能。我们所需要的是法国让我们安宁,要防止法国——假如它不愿和我们保持和平
根据下面材料回答下列问题。从2014年起,广东省在粤东西北地区以县(市、区)为单位遴选首批14个省级新农村连片示范建设丁程,三年将建成42个省级新农村示范片(不含珠三角地区)。根据工作进度安排,示范片建设一年初见成效,两年基本实现目标。与此同时,珠三角地
涎瘘
人们普遍认为适量的体育运动能够有效降低中风的发生率,但科学家还注意到有些化学物质也有降低中风风险的效用。番茄红素是一种让番茄、辣椒、西瓜和番木瓜等果蔬呈现红色的化学物质。研究人员选取一千余名年龄在46至55岁之间的人,进行了长达12年的跟踪调查,发现其中番
文件系统最主要的功能是【】。
Thefirstattemptofmostartists,musicians,andwritersisseldomamasterpiece.Ifyouconsideryourdraftsasdressrehearsa
最新回复
(
0
)