首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型。
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型。
admin
2021-11-25
21
问题
三元二次型f=X
T
AX经过正交变换化为标准形f=y
1
2
+y
2
2
-2y
3
2
,且A
*
+2E的非零特征值对应的特征向量为α
1
=
,求此二次型。
选项
答案
因为f=X
T
AX经过正交变换后的标准形为f=y
1
2
+y
2
2
-2y
3
2
,所以矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=-2 由|A|=λ
1
λ
2
λ
3
=-2得A
*
的特征值为μ
1
=μ
2
=-2,μ
3
=1 从而A
*
+2E的特征值为0,0,3,即α
1
为A
*
+2E的属于特征值3的特征向量,故也为A的属于特征值λ
3
=-2的特征向量。 令A的属于特征值λ
1
=λ
2
=1的特征向量为[*], 因为A为实对称矩阵,所以α
1
T
α=0,即x
1
+x
3
=0,故矩阵A的属于λ
1
=λ
2
=1的特征向量为 [*] 令P=(α
2
,α
3
,α
1
)=[*] 由P
-1
AP=[*]得 [*],所求的二次型为 f=X
T
AX=-[*]x
1
2
+x
2
2
-[*]x
3
2
-3x
1
x
3
.
解析
转载请注明原文地址:https://jikaoti.com/ti/pjlRFFFM
0
考研数学二
相关试题推荐
设,且存在三阶非零矩阵B,使得AB=O,则a=______,b=_______.
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。设,求出可由两组向量同时线性表示的向量。
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
设a1,a2,...at为AX=0的一个基础解系,Β不是AX=0的解,证明:Β+Βa1,Β+a2,...Β+at线性无关。
设向量组(I)a1,a2,a3;(II)a1,a2,a3,a4;(III)a1,a2,a3,a5,若向量组(I)与向量组(II)的秩为3,而向量组(III)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为,设,求AΒ.
设有三个线性无关的特征向量,求a及An.
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.求矩阵A的特征值。
设A为n阶非奇异矩阵,a是n维列向量,b为常数,.证明PQ可逆的充分必要条件是aTA-1a≠b.
随机试题
历史上第一次由政府正式派代表讨论劳工问题的会议是()
下列化合物中,可用来合成缩聚物的是()。
对上市公司辅导机构应至少有5名同定成员参加。()
当代资本主义新变化的实质是()
设X=’’123’’,y=123,k=’’Y’’,表达式x+&k的值是
Learntotalk.
(66)Clonaid,acompanyassociatedbyagroupthatbelievesextraterrestrialscreatedmankind,announcedFridaythatithadprod
Thelastdancewasawaltz.LuketookMeggie’shandandputhisarmaboutherwaist,drewheragainsthim.Hewasanexcellentd
ImprovingYourMotivationforLearningEnglishI.TheimportanceofthetechniquesforimprovingmotivationA.Necessityforlea
ASocioculturalApproachtoReading,LanguageandLiteracyI.ThemeaningoftakingasocioculturalapproachA.Itrejectsthe【
最新回复
(
0
)