首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
admin
2018-05-21
36
问题
设α
1
,α
2
,…,α
t
为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
方法一由α
1
,α
2
,…,α
t
线性无关[*]β,α
1
,α
2
,…,α
t
线性无关, 令kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…+k
t
(β+α
t
)=0, 即(k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0, ∵β,α
1
,α
2
,…,α
t
线性无关 [*] k=k
1
=…=k
t
=0, ∴β,β+α
1
,β+α
2
,…,β+α
t
线性无关 方法二令kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…+k
t
(β+α
t
)=0[*](k+k
1
+…+k
t
)β =-k
1
α
1
-…-k
t
α
t
[*](k+k
1
+…+k
t
)Aβ=-k
1
Aα
1
-…-k
t
Aα
t
=0, ∵Aβ≠0,∴k+k
1
+…+k
t
=0,∴k
1
α
1
+…+k
t
α
t
0[*]k=k
1
=…=k
t
=0[*]β,β+α
1
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/pFVRFFFM
0
考研数学一
相关试题推荐
设0≤a<b,f(x)在[a,b]上连续,(a,b)内可导,证明:在(a,b)内存在三点x1,x2,x3使
下列命题中正确的个数是()①若u1+(u2+u3)+(u4+u5+u6)+…发散,则发散;
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
下列矩阵中与其他矩阵不合同的是()
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足且ξ1=(1,2,1)T,ξ2=(1,一1,1)T是齐次线性方程组Ax=0的一个基础解系.(Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形;(Ⅱ)求出该二次型.
设总体X与Y都服从标准正态分布N(0,1),X1,X2,…,Xn与Y1,Y2,…,Yn是分别来自总体X和Y的两个相互独立的简单随机样本,其样本均值与方差分别为,则
某商场销售某种型号计算机,只有10台,其中有3台次品,现已售出2台.某顾客又来到该商场购买此种型号计算机.若该顾客买4台,以X,Y表示4台计算机中次品数与正品数,求4台中次品数的数学期望,并求协方差cov(X,Y).
设X1,X2,…,Xn为来自指数总体E(λ)的简单随机样本,和S2分别是样本均值和样本方差.若-S2是总体方差的无偏估计,则k=______
设X1,X2,…,Xn是来自总体X的简单随机样本,且总体X的密度函数为求θ的极大似然估计量
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有成为熟练工.设第n年1月份统计的熟练工与非熟练工所占百分比分别为χn和yn,记成向量.(1
随机试题
Althoughhewas(deep)_________hurtbywhatshesaidtohim,hemadenoreply.
交互抑制也称为
局部热水浸泡的适宜水温为()。
“完全获得标准”是确定货物原产地的重要标准。根据这一标准,完全在一个国家生产或制造的进口货物包括()。
决定衍生金融工具价值的是原生金融工具的()。
动物园里。熊猫馆有空调有美食。有一个游客就说:“人命不如动物值钱。”你怎么看?
A、 B、 C、 D、 A考虑图形中的直线数,依次为0、1、2、3、4、5、6、7、(8)。
鸽子:和平
EuphemismI.OverallIntroductionofEuphemismA.Thewordofeuphemism(fromGreek)—Prefix"eu-":good,well—Root"-
Everybody’sultimategoalinlifeistobesuccessfulandhappy.Eachperson’s【B1】______ofsuccessisdifferent.Manypeoplefind
最新回复
(
0
)