首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (Ⅱ)设,求出可由两组向量同时表示的向量.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (Ⅱ)设,求出可由两组向量同时表示的向量.
admin
2016-01-22
65
问题
设α
1
,α
2
,β
1
,β
2
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关.
(Ⅰ)证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示;
(Ⅱ)设
,求出可由两组向量同时表示的向量.
选项
答案
(Ⅰ)因为α
1
,α
2
,β
1
,β
2
线性相关,故存在不全为零的数k
1
,k
2
,l
1
,l
2
,使k
1
α
1
+ k
2
α
2
+l
1
β
1
+l
2
β
2
=0,即 k
1
解析
转载请注明原文地址:https://jikaoti.com/ti/biPRFFFM
0
考研数学一
相关试题推荐
设f(x)二阶连续可导,且f(0)=f’(0)=0,f"(x)>0,过曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
已知,设D为由x=0,y=0及x+y=t所围成的区域,求.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值。
一个容器的内侧是由x2+y2=1(y≤1/2)绕y轴旋转一周而成的曲面,长度单位为m,重力加速度为g(m/s2),水的密度为p(kg/m3)若将容器内盛满的水从顶端全部抽出,至少需做功多少?
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2}上的最大值、最小值.
证明函数u=f(x,y,z)=在点(0,0,0)偏导数的存在性及在该点处沿方向l0=(cosα,cosβ,cosγ)的方向导数
曲面z=x2(1-siny)+y2(1-sinx)在点(1,0,1)处的切平面方程为________.
用指定的变量替换法求:
设A,B为同阶方阵,(Ⅰ)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(Ⅰ)的逆命题成立.
随机试题
逆流加料多效蒸发过程适用于()。
某男,58岁。胸胁胀满,咳唾引痛,舌苔白滑,脉弦。临床诊断最可能是
孙杨在去年5月17日的一次尿检中被查出使用了违禁药物曲美他嗪,禁赛为期3个月。关于兴奋剂的管理,错误的是
以人为本体现的本质要求是()
下列不属于生产性毒物侵入人体途径的是()。
公安工作所面临的形势和工作对象的复杂性,决定了公安工作具有复杂性。()
以下叙述不属于米芾成熟期行书特点的一项是()。对第一段中划线的“沉着痛快”理解最为准确的一项是()。
博鳌亚洲论坛2015年年会开幕式上,习近平主席发表主旨演讲时指出,迈向命运共同体,必须坚持()。
计算之于()相当于实验之于()
阅读下列函数说明和C++代码,将应填入(n)处的字句写在对应栏内。[说明]在销售系统中常常需要打印销售票据,有时需要在一般的票据基础上打印脚注。这样就需要动态地添加一些额外的职责。如下展示了Decorator(修饰)模式。SalesOr
最新回复
(
0
)