首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: 存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: 存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
admin
2018-12-19
30
问题
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:
存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
选项
答案
在[0,ξ]和[ξ,1]上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点η∈(0,ξ),ζ∈(ξ,1),使得 [*] 于是 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/pEWRFFFM
0
考研数学二
相关试题推荐
(2001年)设函数f(χ)在[0,+∞)上可导,f(0)=0,且其反函数为g(χ).若∫0f(χ)g(t)dt=χ2eχ求f(χ).
(1996年)由曲线y=χ+,χ=2及y=2所围图形的面积S=________.
(2013年)设z=f(χy),其中函数f可微,则【】
(2011年)设向量组α1=(1,0,1)T,α2(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,
(2011年)设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Aχ=0的一个基础解系,则A*χ=0的基础解系可为【】
(2011年)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
(2003年)若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
(1993年)求微分方程(χ2-1)dy+(2χy-cosχ)dχ=0满足初始条件y|χ=1=1的特解.
(1991年)曲线y=(χ-1)(χ-2)和χ轴围成一平面图形,求此平面图形绕y轴旋转一周所成的旋转体的体积.
随机试题
实际上,就在反全球化思潮__________的近些年,信息化、网络化仍在__________,移动互联网使地球每个角落发生的事情分秒间就传到世界各地,世界已经变成了“地球屋”。填入画横线部分最恰当的一项是:
某公司生产A、B两种产品,其中B是A的升级产品。经过调研,预判2022年市场对A产品的需求比2021年下降30%(A产品的价格不变)。因此公司决定增加对B产品的营销,使B产品在2022年的销售收入比2021年增长70%,这样恰好使公司2022年的总销售收入
在中国现代文学史上,曹禺是一位知名()
高分辨率CT扫描的特点是
中风、昏迷、痫证、厥证的共同主症是
哪些药物的结构中含有17α-乙炔基
工程项目管理的工作仅限于在_________的工作。()
外观,外表()
下列项目中属于资产负债表中流动资产项目的是()
His______roleascomposerandconductorhelpedhimsucceedingainingthefirstprize.
最新回复
(
0
)