首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,特征值是1,0,-2,矩阵A的属于特征值1与-2的特征向量分别是(1,2,1)T与(1,-1,a)T,求Ax=0的通解.
设A是三阶实对称矩阵,特征值是1,0,-2,矩阵A的属于特征值1与-2的特征向量分别是(1,2,1)T与(1,-1,a)T,求Ax=0的通解.
admin
2017-06-14
57
问题
设A是三阶实对称矩阵,特征值是1,0,-2,矩阵A的属于特征值1与-2的特征向量分别是(1,2,1)
T
与(1,-1,a)
T
,求Ax=0的通解.
选项
答案
因为A是实对称矩阵,必可相似对角化,有 [*] 知r(A)=2. 对应实对称矩阵不同特征值的特征向量相互正交,有 1+(-2)+a=0,得a=1,设λ=0的特征向量是(x
1
,x
2
,x
3
)
T
,由正交性,有 [*] 得α=(1,0,-1)
T
是A属于λ=0的特征向量,亦即Ax=0的解. 由于n-r(A)=3—2=1,可见α是Ax=0的基础解系,所以Ax=0的通解是k(1,0,-1)
T
.
解析
转载请注明原文地址:https://jikaoti.com/ti/p0wRFFFM
0
考研数学一
相关试题推荐
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=证明二次型,对应的矩阵为2ααT+ββT;
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在ξ∈(0,1),使得f’(ξ)=1;
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
如果0<β<α<π/2,证明
(2010年试题,17)(I)比较的大小,说明理由.(Ⅱ)设求极限
(2000年试题,十)设矩阵A的伴随矩阵且ABA-1=BA-1+3E,其中E为4阶单位矩阵,求矩阵B.
随机试题
A、寒战、高热B、尿频、尿急、尿痛C、二者都有D、二者都无肾积脓_______。
小儿无尿是指24小时尿量少于
某市公安局于2008年1月4日对刘某(男,24岁)、张某(男,21岁)持刀抢劫致人重伤一案立案侦查。经侦查查明,刘某、张某实施抢劫犯罪事实清楚,依法应当追究刑事责任。刘某、张某抢劫案于2008年3月30日侦查终结,移送市人民检察院审查起诉。市人民检察院审查
下列属于冲突规范中动态的连结点的是哪一项?()
一般来说,用5.4m的贝克曼梁测得的回弹弯沉比用3.6m的贝克曼梁测得的()。
某企业A产品生产分两个步骤,分别由第一、第二两个生产车间进行。第一车间为第二车间提供半成品,第二车间将半成品加工为产成品。该企业采用平行结转分步法按生产步骤(车间)计算产品成本。在完工产品和月末在产品之间,采用定额比例法分配费用。直接材料费用按材料定额费用
如果货物在运输过程中遭受灭失或损坏,提单受让人可以向托运人提出赔偿要求,能否得到赔偿,取决于有关海上货物运输的国际公约、法律和提单条款的规定。()
阅读下面短文。回答问题。每个人在社会上生活,每天都要与人交往,经常会遇到些别人对自己无礼、无理的事,碰到些别人需要自己理解、帮助、支持的事。在这些事情面前,是宽宏大量,与人为善,还是小肚鸡肠,与人为恶,不仅是一个人道德品质修养高低的表现,而且直接
在文献检索中,按事件发生发展顺序,由近及远,由新到旧的顺序进行查找的方法是()。
在查询设计视图中
最新回复
(
0
)