设A是三阶实对称矩阵,特征值是1,0,-2,矩阵A的属于特征值1与-2的特征向量分别是(1,2,1)T与(1,-1,a)T,求Ax=0的通解.

admin2017-06-14  57

问题 设A是三阶实对称矩阵,特征值是1,0,-2,矩阵A的属于特征值1与-2的特征向量分别是(1,2,1)T与(1,-1,a)T,求Ax=0的通解.

选项

答案因为A是实对称矩阵,必可相似对角化,有 [*] 知r(A)=2. 对应实对称矩阵不同特征值的特征向量相互正交,有 1+(-2)+a=0,得a=1,设λ=0的特征向量是(x1,x2,x3)T,由正交性,有 [*] 得α=(1,0,-1)T是A属于λ=0的特征向量,亦即Ax=0的解. 由于n-r(A)=3—2=1,可见α是Ax=0的基础解系,所以Ax=0的通解是k(1,0,-1)T

解析
转载请注明原文地址:https://jikaoti.com/ti/p0wRFFFM
0

随机试题
最新回复(0)