首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
admin
2019-08-12
25
问题
设A是秩为n一1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
选项
A、α
1
+α
2
。
B、kα
1
。
C、k(α
1
+α
2
)。
D、k(α
1
一α
2
)。
答案
D
解析
因为A是秩为n一1的忍阶矩阵,所以Ax=0的基础解系只含一个非零向量。又因为α
1
,α
2
是方程组Ax=0的两个不同的解向量,所以α
1
一α
2
必为方程组Ax=0的一个非零解,即α
1
一α
2
是Ax=0的一个基础解系,所以Ax=0的通解必定是k(α
1
一α
2
)。选D。此题中其他选项不一定正确。因为通解中必有任意常数,所以选项A不正确;若α
1
=0,则选项B不正确;若α
1
=一α
2
≠0,则α
1
+α
2
=0,此时选项C不正确。
转载请注明原文地址:https://jikaoti.com/ti/owERFFFM
0
考研数学二
相关试题推荐
(06年)设函数f(u)在(0,+∞)内具有二阶导数.且满足等式(I)验证(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
(06年)设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是
(94年)如图2.9所示,设曲线方程为.梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
求下列方程通解或满足给定初始条件的特解:1)y’+1=xex+y.2)3)y’+ytanx=cosx4)(1+x)y”+y’=05)yy”一(y’)2=y4,y(0)=1.y’(0)=06)y"+4y’+1=07)y"+9y=cos(2x+5
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=______.
(2007年)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设,P点的坐标为求点P关于L的对称点Q的坐
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex成立,又设f’(0)存在且等于a(a≠0).求f(x).
设f(χ,y)=(1)f(χ,y)在点(0,0)处是否连续?(2)f(χ,y)在点(0,0)处是否可微?
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。问k为何值时,f(x)在x=0处可导。
随机试题
安全离合器的轴向分力超过弹簧压力时,其左右两半离合器的端面齿爪之间会()。
对人才考察的途径主要有
神志昏迷热闭证宜选用的药物是
肾脏的结核感染主要来自
把一个企业的资本或资本总金额按相等金额划分为若干单位,然后由人们分别占有的一种经济现象,指的是()。
下列选项中,不符合商品房预售条件的是()。
三相异步电动机正常运转时,其转子转速()旋转磁场转速。
在生产资料所有制所包含的各种经济关系中,决定生产资料所有制性质的最基本的经济关系是( )。
纳税人应当自契税纳税义务发生之日起()日内,向土地、房屋所在地的税收征收机关办理纳税申报。
WhencatastrophicfloodshitBangladesh,TNT’semergency-responseteamwasready.Thelogisticsgiant,withheadquartersinAmst
最新回复
(
0
)