首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. (1)证明:对于正整数m,存在常数t,使Am=tm—1A,并求出t; (2)求可逆矩阵P,使P—1AP为对角阵A.
设α=(a1,a2,…,an)T为Rn中的非零向量,方阵A=ααT. (1)证明:对于正整数m,存在常数t,使Am=tm—1A,并求出t; (2)求可逆矩阵P,使P—1AP为对角阵A.
admin
2016-04-11
50
问题
设α=(a
1
,a
2
,…,a
n
)
T
为R
n
中的非零向量,方阵A=αα
T
.
(1)证明:对于正整数m,存在常数t,使A
m
=t
m—1
A,并求出t;
(2)求可逆矩阵P,使P
—1
AP为对角阵A.
选项
答案
(1)A
m
=(αα
T
)(αα
T
)…(αα
T
)=α(α
T
α)
m—1
α
T
=(α
T
α)
m—1
(αα
T
)=([*])
m—1
A=t
m—1
A,其中t=[*].(2)A≠O,A=A,1≤r(A):r(αα
T
)≤r(α)=1,→r(A)=1,由于实对称矩阵的非零特征值的个数等于它的秩,故矩阵A只有一个非零特征值,而有n一1重特征值λ
1
=λ
2
=…=λ
n—1
=0.A的属于特征值0的线性无关特征向量可取为(设a
1
≠0):ξ
1
= [*]的特征值为α,令矩阵P=[ξ
1
ξ
2
… ξ
n—1
α],则有PAP=diag(0,0,…,0,[*]对角阵.其中,λ
n
的求法可利用特征值的性质:λ
1
+λ
2
+…+λ
n—1
+λ
n
=(A的主对角线元素之和)[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/otPRFFFM
0
考研数学一
相关试题推荐
设函数其中g(x)二阶连续可导,且g(0)=1.求f’(x).
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0,证明:方程f"(x)-f(x)=0在(0,1)内有根。
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’(1)≠1,则=________.
设A为3阶实对称矩阵,存在可逆矩阵,使得P-1AP=diag(1,2,-1),A的伴随矩阵A*有特征值λ0,对应的特征向量为α=(2,5,-1)T。求a,b,λ0,的值;
设相似于对角矩阵,则a=________。
设x=z(x,y)由方程x-z=f(y-z)确定,则dz/dx+dz/dy=()
设(a>0),A是3阶非零矩阵,且ABT=0,则方程组Ax=0的通解为()
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=______。
设f(x,y)的某领域内有定义,且f(0,0)=0,=1,则
随机试题
不属于神经系统常见症状的是
(2009年)下列可以提高产品价值的是()。
以下属于设置费与系统效率之间权衡分析的内容是()。
影响财政政策作用发挥的因素不包括()。
建立健全农村土地承包经营权流转市场,引导土地承包经营权平稳有序流转的措施有()。
犯罪分子是在不同时空出现的,这就决定了公安工作的( )。
Whendiditbegintorain?
Whenwillthesalesconferencebeheld?
Shortstoriesareduearevival.Inrecentyears,therehavebeencritically(1)_____collectionsbyAmericanwriterssuchasLyd
Notuntilthedaybeforeyesterday_____togiveaspeechatthemeeting.
最新回复
(
0
)