首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αs(s≥2)线性无关,且 β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1. 讨论向量组β1,β2,…,βs的线性相关性.
设向量组α1,α2,…,αs(s≥2)线性无关,且 β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1. 讨论向量组β1,β2,…,βs的线性相关性.
admin
2018-09-25
35
问题
设向量组α
1
,α
2
,…,α
s
(s≥2)线性无关,且
β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s-1
=α
s-1
+α
s
,β
s
=α
s
+α
1
.
讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
方法一 设x
1
β
1
+x
2
β
2
+…+x
s
β
s
=0,即 (x
1
+x
s
)α
1
+(x
1
+x
2
)α
2
+…+(x
s-1
+x
s
)α
s
=0. 因为α
1
,α
2
,…,α
s
线性无关,则 [*] 其系数行列式 [*] 当s为奇数时,|A|=2≠0,方程组只有零解,则向量组β
1
,β
2
,…,β
s
线性无关; 当s为偶数时,|A|=0,方程组有非零解,则向量组β
1
,β
2
,…,β
s
线性相关. 方法二 显然 [β
1
,β
2
,…,β
s
]=[α
1
,α
2
,…,α
s
] [*] =[α
1
,α
2
,…,α
s
]K
s×s
, 因为α
1
,α
2
,…,α
s
线性无关,则 r(β
1
,β
2
,…,β
s
)≤min{r(α
1
,α
2
,…,α
s
),r(K)}=r(K). r(K)=s<=>|K|=1+(-1)
s+1
≠0=>当s为奇数时,两向量组等价,r(β
1
,β
2
,…,β
s
)=s,则向量组β
1
,β
2
,…,β
s
线性无关; r(K)<=>|K|=1+(-1)
s+1
=0=>当s为偶数时,r(β
1
,β
2
,…,β
s
)<s,则向量组β
1
,β
2
,…,β
s
线性相关.
解析
转载请注明原文地址:https://jikaoti.com/ti/oo2RFFFM
0
考研数学一
相关试题推荐
已知α1,α2,α3与β1,β2,β3是三维向量空间的两组基,且β1=α1+2α2一α3,β2=α2+α3,β3=α1+3α2+2α3,则由基α1,α2,α3到基β1,β2,β3的过渡矩阵是__________.
圆柱面的轴线是L:,点P0(1,-1,0)是圆柱面上一点,求圆柱面方程.
设曲线积分∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数.(Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y);(Ⅱ)计算沿
已知x1,x2,…,x10是取自正态总体N(μ,1)的10个观测值,统计假设为H0:μ=μ0=0;H1:μ≠0.(Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={||≥k},求k的值;(Ⅱ)若已知=1,是否可以据此样本推断μ=0(α=0.05)?
设f(x)在[-2,2]上有连续的导数,且f(0)=0,F(x)=f(x+t)dt,证明级数绝对收敛.
计算下列各题:(Ⅰ)设,其中f(t)三阶可导,且f″(t)≠0,求;(Ⅱ)设求的值.
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为().
(08年)设f(x)是连续函数,(I)利用定义证明函数F(x)=∫0xf(t)dt可导,且F’(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数G(x)=2∫0xf(t)dt一x∫02f(t)dt也是以2为周期的周期函数.
设有某种零件共100个,其中10个是次品,其余为合格品.现在从这些零件中不放回抽样,每次抽取一个零件,如果取出一个合格品就不再取下去,则在三次内取到合格品的概率为______。
随机试题
夸美纽斯提出了()主义教育观,即“将一切()教给一切()”。一是教育内容()化,二是教育对象()化。
一般正常乳腺库柏韧带为三角形强回声条,应位于
当事人对职业病诊断有异议的,可以向哪个部门申请鉴定
材料设备质量控制的主要内容有()。
下列适用于采用实地盘点法清查的有()。
行为治疗是使用实验确立的行为学习原则和方式,克服不良行为习惯的过程,该定义是由()首先提出来的。
阅读以下文字。完成66—70题。照相术传入之初,被认为是“妖术”,能“摄取灵魂”。国人对于照相误解颇多,甚至引发了中西冲突。为此,有照相馆宣扬拍摄照片能摄去“衰运”,由此吸引大批民众。当然,照相馆真正发展,还得依赖科技知识的传播和照相馆自身务实的
革命派与改良派的论战中,改良派的主要阵地《新民丛报》的主笔是()。
制宪机关是()。
[*]
最新回复
(
0
)