设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本, (Ⅰ)求θ的矩估计量和最大似然估计量; (Ⅱ)求常数a,b,使的数学期望均为θ,并求

admin2018-04-15  76

问题 设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,

(Ⅰ)求θ的矩估计量和最大似然估计量;
(Ⅱ)求常数a,b,使的数学期望均为θ,并求

选项

答案直接根据定义求解. (Ⅰ)根据题意总体X的密度函数、分布函数分别为 [*] 为求得b,必须求X(n)的分布函数F(n)(x)及密度函数f(n)(x),X(n)=max(X1,…,Xn)得 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/oRVRFFFM
0

随机试题
最新回复(0)