首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2014年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明: (Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b] (Ⅱ)f(χ)dχ≤∫abf(χ)dχ.
(2014年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明: (Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b] (Ⅱ)f(χ)dχ≤∫abf(χ)dχ.
admin
2016-05-30
53
问题
(2014年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:
(Ⅰ)0≤∫
a
χ
g(t)dt≤(χ-a),χ∈[a,b]
(Ⅱ)
f(χ)dχ≤∫
a
b
f(χ)dχ.
选项
答案
(Ⅰ)由0≤g(∮χ)≤1得 0≤∫
0
χ
g(t)dt≤∫
0
χ
1dt=(χ-a) χ∈[a,b] (Ⅱ)令F(u)=∫
a
u
f(χ)g(χ)-[*]f(χ)dχ 只要证明F(b)≥0,显然F(a)=0,只要证明F(u)单调增,又 F′(u)=f(u)g(u)-f(a+∫
a
u
g(t)dt)g(u) =g(u)[f(u)-f(a+∫
a
u
g(t)dt)] 由(Ⅰ)的结论0≤∫
a
χ
g(t)dt≤(χ-a)知,a≤a+∫
a
χ
g(t)dt≤χ,即 a≤a+∫
a
u
g(t)dt≤u 又f(χ)单调增加,则f(u)≥f(a+∫
a
u
g(t)dt),因此,F′(u)≥0,F(b)≥0. 故[*]f(χ)dχ≤∫
a
b
f(χ)g(χ)dχ.
解析
转载请注明原文地址:https://jikaoti.com/ti/oMDRFFFM
0
考研数学二
相关试题推荐
设f(x)∈C[a,b],在(a,b)内二阶可导.(Ⅰ)若f(x)=0,f(x)<0,f’+(a)>0.证明:存在ξ∈(a,b),使得f(ξ)f"(ξ)+f’2(ξ)=0.(Ⅱ)若f(a)=f(b)=∫0bf(x)dx=0,证明:存在η∈(a,b),使
已知α1=(1,2,3)T,α2=(-2,1,-1)T和β1=(4,-2,α)T,β2=(7,b,4)T是等价向量组,则参数a,b应分别为()。
某湖泊的水量为V,每年排入湖泊内含污染物A的污水量为V/6,流入湖泊内不含A的水量为V/6,流出湖泊的水量为V/3.已知2004年底湖中A的含量为5m0,超过国家规定指标,为了治理污染,从2005年起,限定排入湖中含A污水的浓度不超过m0/V.问至多经历多
求直线L:与平面π:x+y+z+1=0的交点.
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y″+a1(x)y′+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
在区间[-1,1]上的最大值为________.
求函数当x→0时的左右极限,并说明x→0时极限是否存在。
设x→0时,-ex与xn是同阶无穷小,则n为________。
(2012年试题,三)过(0,1)点作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成,求区域D的面积及D绕x轴旋转一周所得旋转体的体积.
随机试题
在焊接法兰盘时,为减小角变形可采用()。
患者,男,35岁。反复发热、咳嗽2个月余,口服多种抗菌药均无效,现出现胸闷、气促,体重明显减轻。检查:外周血白细胞计数下降,T淋巴细胞下降,CD4+T淋巴细胞计数190/μl,胸部CT示间质性肺炎。该病的主要传播方式是
定期存款的典型代表是()。
如果期初余额存在对本期财务报表产生重大影响的错报,错报的影响未能得到正确的会计处理和恰当的列报,注册会计师应当对财务报表发表的审计意见类型是()。
每当节假日前,部分家电厂家都会采取一些促销措施,致使家电销售量突然增加,此时,家电配送中心为了满足用户的需要,就需制订()。
分拣工作采用自动化设备,还是手工方法,主要取决于配送中心的地理位置和工作人员的技术素质。()
软件维护工作中存在的问题?
有以下程序:#include<stdio.h>main(){inta[]={1,2,3,4,5,6,7,8,9,10,11,12},*p=a+5,*q=NULL;*q=*(p+5);printf("%
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好表对象“tStaff”和“tTemp”及窗体对象“tTest”。试按以下要求完成设计:创建一个参数查询,查找教师的“编号”、“姓名”、“性别”和“职称”四个字段内容。其中“性别”字
A、Deliciousfood.B、Comfortableaccommodation.C、Agreatlobby.D、Fitnessofferings.A本题设题点在因果处。根据句(2)可知,由于消费者的健康意识不断提高,所以人们在旅行时
最新回复
(
0
)