首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
设向量组(I)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5一α4的秩为4.
admin
2016-10-13
31
问题
设向量组(I)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,若向量组(I)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α
1
,α
2
,α
3
,α
5
一α
4
的秩为4.
选项
答案
因为向量组(I)的秩为3,所以α
1
,α
2
,α
3
线性无关,又因为向量组(Ⅱ)的秩也为3,所以向量α
4
可由向量组α
1
,α
2
,α
3
线性表示. 因为向量组(Ⅲ)的秩为4,所以α
1
,α
2
,α
3
,α
5
线性无关,即向量α
5
不可由向量组α
1
,α
2
,α
3
线性表示,故向量α
5
一α
4
不可由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,α
5
一α
4
线性无关,于是向量组α
1
,α
2
,α
3
,α
5
一α
4
的秩为4.
解析
转载请注明原文地址:https://jikaoti.com/ti/o5wRFFFM
0
考研数学一
相关试题推荐
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
求点(2,1,0)到平面3x+4y+5z=0的距离.
设二阶常系数微分方程y〞+αyˊ+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定α,β,γ和此方程的通解.
f(x)在[a,b]上有二阶连续导数,且满足方程f〞(x)+x2fˊ(x)-2f(x)=0,证明:若f(a)=f(b)=0,则f(x)在[a,b]上恒为0.
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设函数f(x)在x=1的某邻域内连续,且有求f(1)及f’(1);
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.(Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=(x0,y0=0,(x0,y0>0,(x0,y0)
随机试题
Treesareusefultoman【B1】______threeveryimportantways:theyprovidehim【B2】______woodandotherproduces;theyhelpto
A.疼痛常固定于病变局部且常有压痛B.疼痛常在胸廓的下部或前部,在胸廓活动明显时加重C.胸痛常在心前区或胸骨后方,可放射到左肩或腹部D.疼痛常在肋缘或斜方肌处有放射痛E.胸痛多位于下胸部胸壁疾病的疼痛特点是
A.核型46,XX(XY),-14,+t(14q21q)B.核型46,XX(XY),-21,+t(21q21q)C.核型45,XOD.核型46,XX(XY),+21E.核型(46,XXXY)/(47,XXXY)+21G/G易位型Down综合征最
患者,男,34岁。因消瘦、口渴、乏力2月就诊。空腹血糖8.4mmol/L,尿糖阴性。现口渴引饮,饮食减少,精神不振,四肢乏力,体瘦,舌质淡红,苔白而干,脉弱。治疗应首选的方剂是
法医刘某是某公安机关的工作人员,他对一起伤害案件的伤情作了鉴定,鉴定结论为轻伤,那么他处于何种诉讼地位?()
某公司专门从事劳务派遣业务。最近,该公司与某培训中心签订了一份劳务派遣协议,约定向其派遣20名教学辅助人员,分为两个周期,每个周期为1年,每个周期结束前订立新的劳务派遣协议。该公司根据这份协议,招收了20名被派遣劳动者,并与他们签订了劳动合同。可此时,因招
每个人都有命运不公平和身处逆境的时候,这时我们应该相信:______。许多事情刚开始时,丝毫看不见结果,更谈不上被社会所承认。要想成功就应付诸努力,既不要烦恼,也不要焦急,踏踏实实地工作就会得到快乐。而一味盯着成功的果实,肯定忍受不了若干的寂寞,到头来只会
在WindowsXP中,日期、时间、数字以及货币的显示方式不可改变。
AirPollutionandAcidRainTheincreasingvarietyandprevalenceofpollutionpresentstheworldwithmanyextremelydaunti
YouarenowtheproudowneroftheAFZoom-Nikkor,alensthatwillprovideyouwithyearsofexcitingpicture-takingopportunit
最新回复
(
0
)