首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续且满足,f(0)=1,f’(x)一f(x)=a(x一1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
设f(x)在[0,1]上连续且满足,f(0)=1,f’(x)一f(x)=a(x一1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
admin
2018-05-23
71
问题
设f(x)在[0,1]上连续且满足,f(0)=1,f
’
(x)一f(x)=a(x一1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
选项
答案
由f
’
(x)一f(x)=a(x一1)得 f(x)=[a∫(x一1)e
∫-1dx
dx+C]e
-∫-dx
=Ce
x
-ax 由f(0)=1得C=1,故f(x)=e
x
一ax. V(a)=π∫
0
1
f
2
(x)dx=[*], 由V
’
(a)=π(一2+[*])=0得a=3,因为V
’’
(a)=[*]>0,所以当a=3时,旋转体的体积最小,故f(x)=e
x
一3x.
解析
转载请注明原文地址:https://jikaoti.com/ti/o52RFFFM
0
考研数学一
相关试题推荐
袋中有5个球,其中白球2个,黑球3个.甲、乙两人依次从袋中各取一球,记A=“甲取到白球”,B=“乙取到白球”.①若取后放回,此时记p1=P(A),P2=P(B);②若取后不放回,此时记P3=P(A),P4=P(B).则()
设λ1、λ2分别为n阶实对称矩阵A的最小和最大特征值,X1、X2分别为对应于λ1和λn的特征向量,记f(X)=,X∈R2,X≠0证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
设有n元实二次型f(x1,x2,…,xm)=(x1+a1x2)2+(x2+a2x3)2+…+(xn—1+an—1xn)2+(xn+anx1)2,其中ai(i=1,2,…,咒)为实数.试问:当a1,a2,…,an满足何种条件时,二次型f为正定二次型.
已知齐次线性方程组其中≠0.试讨论α1,α2,…,αn和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
设总体X的分布函数为其中θ是未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本.求θ的最大似然估计量;
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为试求y=f(x)所满足的微分方程,并求该微分方程满足条件的解.
设则3条直线a1x+b1y+c1=0,a2x+b2y+c2=0,a3z+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充要条件是
计算,其中Ω由平面z=0,z=1及曲面x2+y2=2围成.
设f(x,y)在平面区域D={(x,y)|x2+y2≤1}上有二阶连续偏导数,且l为D的边界正向一周.
计算曲面积分,其中∑为锥面在柱体x2+y2≤2x内的部分.
随机试题
_________是指科技队伍中从事不同性质科研劳动人员的比例()
引起学龄期儿童心力衰竭的常见原因是
血液中和血浆蛋白结合的T3、T4大约是
A.氯化钠B.羟丙基甲基纤维素C.泊洛沙姆D.司盘E.羟苯乙酯常用作注射剂的渗透压调节剂的是
甲向乙订购20万元货物,双方约定:“乙收到甲的5万元定金后,即应交付全部货物。”合同订立后,乙在约定时间内只收到甲的2万元定金。下列说法正确的是()。
关于脚手架工程的安装与拆除,正确的是()。
在建设项目的组织系统中,常用的组织结构模式有( )。
高强度的学习动机和低强度的学习动机一样降低学习效率。()
“发展才是硬道理”所表达的是()。
社会主义民主与资本主义民主之间既存在着一定的联系,又有着本质的区别。它们之间的根本区别主要表现在()
最新回复
(
0
)