首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3. ① 证明α,Aα,A2α线性无关. ② 设P=(α,Aα,A2α),求P-1AP.
设A是3阶矩阵,α1,α2,α3都是3维非零列向量,满足Aαi=iαi,(i=1,2,3).记α=α1+α2+α3. ① 证明α,Aα,A2α线性无关. ② 设P=(α,Aα,A2α),求P-1AP.
admin
2020-06-11
34
问题
设A是3阶矩阵,α
1
,α
2
,α
3
都是3维非零列向量,满足Aα
i
=iα
i
,(i=1,2,3).记α=α
1
+α
2
+α
3
.
① 证明α,Aα,A2α线性无关.
② 设P=(α,Aα,A
2
α),求P
-1
AP.
选项
答案
条件说明α
1
,α
2
,α
3
都是A的特征向量,特征值依次为1,2,3,因此α
1
,α
2
,α
3
线性无关. ① α=α
1
+α
2
+α
3
,Aα=α
1
+2α
2
+3α
3
,A
2
α=α
1
+4α
2
+9α
3
,用矩阵分解,矩阵P=(α,Aα,A
2
α)=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
)[*][*]的行列式为2,因此是可逆矩阵.于是r(α,Aα,A2α)=r(P)=r(α
1
,α
2
,α
3
)=3,α,Aα,A
2
α线性无关.② 记P
一1
AP=B,则AP=PB,即(Aα,A
2
α,A
3
α)=(α,Aα,A
2
α)B.于是B是向量组Aα,A
2
α,A
3
α对α,Aα,A
2
α的表示矩阵.显然其第1,2两列分别为(0,1,0)
T
和(0,0,1)
T
.第3列是A
3
α对α,A
3
α,A
2
α的表示系数,设为c
1
,c
2
,c
3
,则P(c
1
,c
2
,c
3
)
T
=A
3
α, 注意A
3
α=α
1
+8α
2
+27α
3
,于是[*] 因为(α
1
,α
2
,α
3
)是可逆矩阵,所以有[*]用初等变换法求得c
1
=6,c
2
=一1 1,c
3
=6,于是[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/nqARFFFM
0
考研数学二
相关试题推荐
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(x)dx=g(ξ)∫aξf(x)dx
求积分:
求使不等式对所有的自然数n都成立的最大的数α和最小的数β
求f(x)=的x3的系数.
设矩阵满足A-1(E-BBTA-1)-1C-1=E,求C.
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设f(χ)在区间[a,b]上二阶可导且f〞(χ)≥0.证明:(b-a)f()≤∫abf(χ)dχ≤[f(a)+f(b)].
设f(χ)在χ=χ0处可导,且f(χ0)≠0,证明:
证明:x-x2<ln(1+x)<x(>0)
设函数z=(1+ey)cosχ-yey,证明:函数z有无穷多个极大值点,而无极小值点.
随机试题
建筑的下列场所应设置防烟设施的是()。
关于水样变性的叙述,下列错误的是
可以在卫健委和国务院药品监督管理部门共同指定的医学、药学专业刊物上介绍宣传的药品是
2007年,我国首次月球探测工程取得圆满成功,标志着我国航天事业的巨大进步。但是,与世界其他航天大国不同的是,我国迄今没有一部可以系统调整各种空间活动的综合性法律,法学界对此也展开热烈讨论,积极呼吁我国尽快发展空间法律制度。对此,下列说法正确的有:(
住宅基地内相邻台地间高差大于()时,应在挡土墙或坡比值大于0.5的护坡顶面加设安全防护措施。
我国城市规划行政主管部门分为三个层次,最低层次是:
《水法》中的水工程是指在江河、湖泊和地下水源上()水资源的各类工程。
理论上,期货价格有可能高于或等于相应的现货金融工具,不可能低于相应的现货金融工具。( )
下列被投资企业中,应当纳入甲公司合并财务报表合并范围的有()。
下列房地产的价值评估中,应遵循最高最佳利用原则的有()。
最新回复
(
0
)