首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,η*+ξn—r,线性无关。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明: η*,η*+ξ1,…,η*+ξn—r,线性无关。
admin
2019-05-11
48
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n—r
是对应的齐次线性方程组的一个基础解系。证明:
η
*
,η
*
+ξ
1
,…,η
*
+ξ
n—r
,线性无关。
选项
答案
假设η
*
,η
*
+ξ
1
,…,η
*
+ξ
n—r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n—r
使 c
0
η
*
+c
1
(η
*
+ξ
1
)+…+c
n—r
(η
*
+ξ
n—r
)=0, 即 (c
0
+c
1
+…+c
n—r
)η
*
+c
1
ξ
1
+…+c
n—r
ξ
n—r
=0。 (2) 用矩阵A左乘上式两边,得 0=A[(c
0
+c
1
+…+c
n—r
)η
*
+c
1
ξ
1
+…+c
n—r
ξ
n—r
] =(c
0
+c
1
+…+c
n—r
)Aη
*
+c
1
Aξ
1
+…+c
n—r
Aξ
n—r
, =(c
0
+c
1
+…+c
n—r
)b, 因为b≠0,故c
0
+c
1
+…+c
n—r
=0,代入(2)式,有 c
1
ξ
1
+…+c
n—r
ξ
n—r
=0, ξ
1
,…,ξ
n—r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n—r
线性无关,因此c
1
=c
2
=…=c
n—r
=0,则c
0
=0。与假设矛盾。 综上,向量组η
*
,η
*
+ξ
1
,…,η
*
+ξ
n—r
线性无关。
解析
转载请注明原文地址:https://jikaoti.com/ti/FALRFFFM
0
考研数学二
相关试题推荐
椭圆2χ2+y2=3在点(1,-1)处的切线方程为_______.
设z=,求dz与
设f(χ,y)=,试讨论f(χ,y)在点(0,0)处的连续性,可偏导性和可微性.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设A=,求A的特征值,并证明A不可以对角化.
设f(χ)在[1,2]上连续,在(1,2)内可导,且f(χ)≠0(1<χ<2),又存在且非零,证明:(1)存在ξ∈(1,2),使得(2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f′(η)ln2.
确定常数a,b,c,使得=c.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设直线y=ax+b为曲线y=ln(x+2)的切线,若y=ax+b,x=0,x=4及曲线y=ln(x+2)围成的图形面积最小,求a,b的值.
设无界区域G位于曲线y=(e≤x<+∞)下方,x轴上方,则G绕x轴旋转一周所得空间区域的体积为_________。
随机试题
《公安机关组织管理条例》的制定依据包括()。
拉开日本地方分权改革的帷幕,颁布《地方分权推进法》的是()
Thewomanhas______illforthreemonths.
关于边际储蓄倾向MPS,下列说法正确的是()。
端午节______已有2500余年历史,它由驱毒避邪的节令习俗______出各地丰富多彩的祭祀、游艺、保健等民间活动。填入划横线部分最恰当的一项是()。
—Thepetdoginyourhandisverynice.Isit______?—Yes,butI’llgiveittomyfriend,Lucy,as______birthdaypresent.
[2010年GRK真题]最近,国内考占学家在北方某偏远地区发现春秋时代古遗址。当地旅游部门认为:古遗址体现了春秋古文明的特征,应立即投资修复,并在周围修建公共交通设施,以便吸引国内外游客。张教授对此提出反对意见:古遗址有许多未解之谜待破译,应先保护起来,暂
邓小平提出建设有中国特色社会主义的命题是在党的()
Poetrycanbecomparedtopainting.Whenyoulookataworkofart,youfirstseeitforwhatitis—adepictionofaperson,an
Forthispart,youareallowed30minutestowriteashortessayonthetopicCompetition.Youshouldwriteatleast120wordsb
最新回复
(
0
)