首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η1,η2,η3满足η1+η2= (2,0,-2,4)T,η1+η3=(3,1,0,5)T,则Ax=b的通解为_________________.
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η1,η2,η3满足η1+η2= (2,0,-2,4)T,η1+η3=(3,1,0,5)T,则Ax=b的通解为_________________.
admin
2021-02-25
42
问题
设4元非齐次线性方程组Ax=b的系数矩阵A的秩r(A)=3,且它的3个解向量η
1
,η
2
,η
3
满足η
1
+η
2
=
(2,0,-2,4)
T
,η
1
+η
3
=(3,1,0,5)
T
,则Ax=b的通解为_________________.
选项
答案
k(1,1,2,1)
T
+(1,0,-1,2)
T
,其中k为任意常数
解析
本题考查线性方程组的解的性质和非齐次线性方程组的通解的结构.
因为r(A)=3,所对应的齐次线性方程组Ax=0的解空间的维数为4-3=1,故它的任一非零解都可作为其基础解系.由于η
1
+η
3
-(η
1
+η
2
)=η
3
-η
2
=(1,1,2,1)
T
可作为Ax=0的基础解系.
又
是Ax=b的—个解,所以Ax=b的通解为k(1,1,2,1)
T
+(1,0,-1,2)
T
,其中k为任意常数
转载请注明原文地址:https://jikaoti.com/ti/npARFFFM
0
考研数学二
相关试题推荐
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
计算χy(χ+y)dσ,其中D是由χ2-y2=1及y=0,y=1围成的平面区域.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设f(x)=,证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
用配方法化二次型f(χ1,χ2,χ3)=χ12+2χ1χ2+2χ1χ3-4χ32为标准形.
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设f(x)在x=x0的某邻域U内有定义,在x=x0的去心邻域内可导,则下述命题:①f’(x0)存在,则f’(x)也必存在.②设f’(x)存在,则f’(x0)也必存在.③设f’(x0)不存在,则’(x0)也必不存在.④设f’(x)不存在,则’(x0)
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶n为
随机试题
下列选项中,()是现代社会工作的核心组成部分。
A.麻疹B.水痘C.风疹D.丹痧E.奶麻特征性表现为环口苍白圈、草莓舌的疾病是
某企业2007年利润总额200万元,上缴所得税66万元,当年在成本中列支的全部利息67万元,折旧摊销20万元,还本金额80万元,该企业当年的偿债备付率为()。
自然灾害不属于()。
当一国货币贬值时,该国对本国货币的需求量会()。
如果清偿因或有事项而确认的负债所需支出全部或部分预期由第三方补偿,下列说法中,错误的有()。
假设某企业每月需要甲材料1000公斤,每公斤月储存成本为5元,一次订货成本为100元,则相邻两次订货最佳的订货间隔期为()天。一个月按30天计算。
1840年鸦片战争以后,中国遭受西方列强“坚船利炮”的欺凌不断加深,中华民族面临生死存亡的形势也日益严峻,中国“睡狮”在西方列强的隆隆炮声中逐渐苏醒。促使中国人民的民族意识开始普遍觉醒的重大事件是
Cache的中文译名是
WhoisGeorgeMitchell?
最新回复
(
0
)