首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(χ)在[0,2]上连续,在(0,2)内二阶可导,且=0,∫12f(χ)dχ=f(2). 证:ヨε∈(0,2),使f′(ε)+f〞(ε)=0.
已知f(χ)在[0,2]上连续,在(0,2)内二阶可导,且=0,∫12f(χ)dχ=f(2). 证:ヨε∈(0,2),使f′(ε)+f〞(ε)=0.
admin
2020-03-15
44
问题
已知f(χ)在[0,2]上连续,在(0,2)内二阶可导,且
=0,∫
1
2
f(χ)dχ=f(2).
证:ヨε∈(0,2),使f′(ε)+f〞(ε)=0.
选项
答案
令f(χ)=e
χ
f′(χ),因[*]=0,所以f(1)=-1, 从而原极限=[*]=]0, 因为[*]≠0,故[*]=0,从而f′(1)=0,故F(b)=F(1),原命题得证.
解析
转载请注明原文地址:https://jikaoti.com/ti/n0tRFFFM
0
考研数学二
相关试题推荐
n阶实对称矩阵A正定的充分必要条件是()
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,3)T线性表出。把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出。
已知齐次方程组为其中≠0。讨论当a1,a2,…,an和b满足何种关系时:方程组有非零解,在此情形条件下写出一个基础解系。
是否存在平面二次曲线y=ax2+bx+c,其图形经过以下各点:(0,1),(—2,2),(1,3),(2,1)。
[2016年]已知f(x)在[0,]上连续,在(0,)内是函数的一个原函数,f(0)=0.证明:f(x)在区间(0,)内存在唯一零点.
[2002年]设y=y(x)是二阶常系数线性微分方程y"+py'+qy=e3x满足初始条件.y(0)=y'(0)=0的特解,则当x→0时,函数[ln(1+x2)]/y(x)的极限().
[2014年]设函数f(u)二阶连续可导,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f′(0)=0,求f(u)的表达式.
[2010年]设函数u=(x,y)具有二阶连续偏导数,且满足等式=0.确定a,b的值,使等式在变换ξ=x+ay,η=x+by下化简为=0.
[2011年]一容器的内侧是由图1.3.5.14中曲线绕y轴旋转一周而成的曲面,该曲面由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成.若将容器内盛满的水从容器顶点全部抽出至少需要做多少功?(长度单位为m,重力加速度为g
设函数f(x)在[1,+∞]上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为V(t)=[t2f(t)一f(1)]试求y=f(x)所应满足的微分方程,并求该微分方程满足条件y|x=2=的
随机试题
控制的根据是()
提出“先有农村红军,后有城市政权”论断的领导人是()
有一鸡场饲养3000只蛋鸡,日粮中钙含量为1%,钙磷比例为3:1。在鸡群中最可能出现具有诊断意义的症状是()。
个人独资企业的缺点包括()。
关于施工成本分析基本方法的用途的说法,正确的有()。
水平分析是一种基于对未来利率预期的债券组合管理策略。( )
利润表可以考核借款人经营计划的完成情况,当银行对利润表分析时,需要对损益表进行调整,营业利润要调整为利润总额时,需要将营业利润加上(),再减去营业外支出。
当达到最小时,则()。
将价格定为1000元,而不是990元,则采用的定价策略属于()。
要开展教育科研,首先必须要掌握教育科研的基本过程。其中,()是教育科研工作的起点。
最新回复
(
0
)