[2014年] 设函数f(u)二阶连续可导,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f′(0)=0,求f(u)的表达式.

admin2019-04-05  46

问题 [2014年]  设函数f(u)二阶连续可导,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f′(0)=0,求f(u)的表达式.

选项

答案作变量代换u=excosy将所给方程化为z对u的导数的新方程,解之即可求得f(u)的表达式. 令u=excosy,则z=f(excosy)可看成是z=f(u)与u=excosy的复合函数.先应用复合函数求导法则将z对x,y的偏导数所满足的方程化为z对u的导数所满足的方程: [*]=f′(u)excosy,[*]=f′(u)(一exsiny), [*][f′(u)excosy]=f″(u)excosy+f′(u)excosy =f″(u)e2xcos2y+f′(u)excosy, ① [*][f′(u)(一exsiny)]=一f″(u)[*]exsiny-excosyf′(u) =f″(u)esiny·exsiny·ex-f′(u)excosy=f″(u)e2xsin2y—f′(u)excosy. ② 由式①+式②得到[*]=f″(u)e2x,代入原方程得到f″(u)e2x=[4f(u)+u]e2x, 即 f″(u)一4f(u)=u ③ 于是求f(u)转化为解下述初值问题: [*]其中y=f(u). 其对应的特征方程为λ2一4=0,其特征值为λ=±2,从而其对应的齐次方程的通解为 Y=C1e2u+C2e-2u,其中c1,c2为任意常数. 又由观察法易看出y″一4y=u的一个特解为y*=一[*]u,显然y*=一[*]u满足上述方程,于是方程③的通解为 y=Y+y*=c1e2u+c2e-2u一[*]u. 由初始条件y(0)=0,y′(0)=0得到c1+c2=0,2c1一2c2一[*]=0,解得c1=[*],c2=一[*] 综上得到f(u)的表达式为f(u)=[*].

解析
转载请注明原文地址:https://jikaoti.com/ti/IBLRFFFM
0

最新回复(0)