首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设函数f(u)二阶连续可导,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f′(0)=0,求f(u)的表达式.
[2014年] 设函数f(u)二阶连续可导,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f′(0)=0,求f(u)的表达式.
admin
2019-04-05
46
问题
[2014年] 设函数f(u)二阶连续可导,z=f(e
x
cosy)满足
=(4z+e
x
cosy)e
2x
,若f(0)=0,f′(0)=0,求f(u)的表达式.
选项
答案
作变量代换u=e
x
cosy将所给方程化为z对u的导数的新方程,解之即可求得f(u)的表达式. 令u=e
x
cosy,则z=f(e
x
cosy)可看成是z=f(u)与u=e
x
cosy的复合函数.先应用复合函数求导法则将z对x,y的偏导数所满足的方程化为z对u的导数所满足的方程: [*]=f′(u)e
x
cosy,[*]=f′(u)(一e
x
siny), [*][f′(u)e
x
cosy]=f″(u)e
x
cosy+f′(u)e
x
cosy =f″(u)e
2x
cos
2
y+f′(u)e
x
cosy, ① [*][f′(u)(一e
x
siny)]=一f″(u)[*]e
x
siny-e
x
cosyf′(u) =f″(u)esiny·e
x
siny·e
x
-f′(u)e
x
cosy=f″(u)e
2x
sin
2
y—f′(u)e
x
cosy. ② 由式①+式②得到[*]=f″(u)e
2x
,代入原方程得到f″(u)e
2x
=[4f(u)+u]e
2x
, 即 f″(u)一4f(u)=u ③ 于是求f(u)转化为解下述初值问题: [*]其中y=f(u). 其对应的特征方程为λ
2
一4=0,其特征值为λ=±2,从而其对应的齐次方程的通解为 Y=C
1
e
2u
+C
2
e
-2u
,其中c
1
,c
2
为任意常数. 又由观察法易看出y″一4y=u的一个特解为y
*
=一[*]u,显然y
*
=一[*]u满足上述方程,于是方程③的通解为 y=Y+y
*
=c
1
e
2u
+c
2
e
-2u
一[*]u. 由初始条件y(0)=0,y′(0)=0得到c
1
+c
2
=0,2c
1
一2c
2
一[*]=0,解得c
1
=[*],c
2
=一[*] 综上得到f(u)的表达式为f(u)=[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/IBLRFFFM
0
考研数学二
相关试题推荐
设f(x)为非负连续函数,且满足f(x)∫0xf(x-t)dt=sin4x,求f(x)在上的平均值.
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为v0(m/s),飞机与地面的摩擦系数为u,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg.s2/m2),在垂直方向的比例系数为ky(kg.s2/m2).设飞机的质量
求由下列方程所确定的隐函数的导数或偏导数:
计算二重积分,其中D是由x轴,y轴与曲线所围成的区域,a>0,b>0。
设f(lnx)=求∫f(x)dx.
已知曲线L的方程406过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a、b为何值时,g(x)在x=0处可导。
(2012年)设区域D由曲线y=sin,x=,y=1围成,则(xy5-1)dxdy=
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有唯一解,并求x1.
[2009年]计算二重积分(x—y)dxdy,其中D={(x,y)∣(x一1)2+(y一1)2≤2,y≥x).
随机试题
在蛋白质α-螺旋结构中,每个氨基酸残基绕轴转
A.延髓B.桥脑C.小脑蚓锥D.小脑扁桃体E.颈髓枕大孔后上方为
有机磷农药中毒,烟碱样表现为
社会主义法治理念是以社会主义为本质属性的系统化的法治意识形态。关于社会主义法治理念的意识形态属性,下列哪一说法不能成立?(2012—卷一—1,单)
根据《建设项目环境保护设计规定》,在项目建议书阶段应编制()。
水利基本建设项目资产形成、资产移交和投资核销的依据是()。
认识过程中影响着问题空间构造的因素有()。
下列倒装句中属于定语后置的一项是()。
判别下列级数的敛散性
(2009年下半年)常用的信息系统开发方法中,不包括(9)。
最新回复
(
0
)