首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=g(x)φ(x),φ(x)在x=a连续但不可导,又g’(a)存在,则g(a)=0是F(x)在x=a可导的( )条件.
设F(x)=g(x)φ(x),φ(x)在x=a连续但不可导,又g’(a)存在,则g(a)=0是F(x)在x=a可导的( )条件.
admin
2018-11-21
26
问题
设F(x)=g(x)φ(x),φ(x)在x=a连续但不可导,又g’(a)存在,则g(a)=0是F(x)在x=a可导的( )条件.
选项
A、充分必要
B、充分非必要
C、必要非充分
D、既非充分也非必要
答案
A
解析
①因为φ’(a)不存在,所以不能对g(x)φ(x)用乘积的求导法则;②当g(a)≠0时,若F(x)在x=a可导,可对
用商的求导法则.
(Ⅰ)若g(a)=0,按定义考察
即 F’(a)=g’(a)φ(a).
(Ⅱ)再用反证法证明:若F’(a)存在,则必有g(a)=0.若g(a)≠0,由商的求导法则即知 φ(x)=
在x=a可导,与假设条件φ(a)在x=a处不可导矛盾.因此应选A.
转载请注明原文地址:https://jikaoti.com/ti/n02RFFFM
0
考研数学一
相关试题推荐
设S为椭球+z2=1的上半部分,已知S的面积为A,则第一类曲面积分(4x2+9y2+36z2+xyz)dS=_____________.
设函数f(x,y,z)=2xy—z2,则f(x,y,z)在点(2,-1,1)处的方向导数的最大值为().
设A,B为随机事件满足条件1>P(A)>0,1>P(B)>0,且P(A—B)=0,则成立().
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(0)=f(),2f(x)dx=f(2).证明存在ξ∈(0,2),使f″(ξ)=0.
若α1,α2,α3,β1,β2都是四维列向量,且四阶行列式|α1,α2,α3,β1|=m,|β2,α1,α2,α3|=n则四阶行列式|α3,α2,α1,β1+β2|等于().
设S是平面x+y+z=4被圆柱面x2+y2=1截出的有限部分,则曲面积分ydS=().
求f(x,y)=的极值。
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解,求方程组所有的解。
已知曲线L为圆x2+y2=a2在第一象限的部分,则=________。
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-,
随机试题
A.身黄B.目黄C.舌苔黄D.小便黄确定黄疸的主要依据是
患者女性,25岁,过去在小腿及足部有湿疹样病变,由于过度搔抓而出现红肿、糜烂、渗液等,原发病灶附近有多数散在的小丘疹,丘疱疹及水疱,皮损相互融合成片,对称分布,部分发展为有糠状鳞屑的椭圆形红斑,瘙痒剧烈。
《职业病防治法》实施后,国务院对国务院卫生行政部门和国务院负责安全生产监督管理的部门在职业病防治工作的职责作出了调整,其中安全监督管理部门的职责有()。
城市供电工程总体规划的主要内容包括()
按照选择权的性质划分,金融期权可以分为:()。
新中国进入社会主义初级阶段的标志是()
“挟泰山以超北海,语人曰吾不能,是诚不能也。为长者折枝,语人曰吾不能,是不为也,非不能也。”《孟子》中的这段话启示我们,做事情时要区分可能性和不可能性,二者的区别在于
5台主机A、B、C、D、E分属几个网段?哪些主机位于同一网段?若要加入第六台主机F,使它能与主机A属于同一网段,其IP地址范围是多少?
下列描述中,不符合良好程序设计风格要求的是()。
YaoMing,ourfavoritebasketball(play)_______,isbecomingasuperstarintheworld.
最新回复
(
0
)