首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知 问a,b取何值时,向量组α1,α2,α3与β1,β2等价?
已知 问a,b取何值时,向量组α1,α2,α3与β1,β2等价?
admin
2017-06-14
38
问题
已知
问a,b取何值时,向量组α
1
,α
2
,α
3
与β
1
,β
2
等价?
选项
答案
因为A=(α
1
,α
2
,α
3
,β
1
,β
2
)= [*] 所以当a≠12,b≠4时,r(α
1
,α
2
,α
3
,β
1
,β
2
)=4,r(α
1
,α
2
,α
3
)=3≠4,故β
1
,β
2
不能由 α
1
,α
2
,α
3
线性表示,而r(β
1
,β
2
)=2≠4,故α
1
,α
2
,α
3
也不能由β
1
,β
2
线性表示; 当a=12,b≠4时,r(α
1
,α
2
,α
3
,β
1
,β
2
)=3,r(α
1
,α
2
,α
3
)=2≠3,故β
1
,β
2
不能由 α
1
,α
2
,α
3
线性表示,而r(β
1
,β
2
)=2≠3,故α
1
,α
2
,α
3
也不能由β
1
,β
2
线性表示; 当a≠12,b=4时,r(α
1
,α
2
,α
3
,β
1
,β
2
)=3,r(α
1
,α
2
,α
3
)=3,故β
1
,β
2
可由α
1
,α
2
,α
3
线性表示,且表示式唯一,而r(β
1
,β
2
)=2≠3,故α
1
,α
2
,α
3
也不能由β
1
,β
2
线性表示; 当a=12,b=4时,r(α
1
,α
2
,α
3
,β
1
,β
2
)=2,r(α
1
,α
2
,α
3
)=2,故β
1
,β
2
可由α
1
,α
2
,α
3
线性表示,且表示式不唯一,而r(β
1
,β
2
)=2,故α
1
,α
2
,α
3
也可由β
1
,β
2
线性表示,且表示唯一. 综上所述,当a=12,b=4时,向量组α
1
,α
2
,α
3
与β
1
,β
2
等价.
解析
转载请注明原文地址:https://jikaoti.com/ti/m7wRFFFM
0
考研数学一
相关试题推荐
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.A2;
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
随机试题
器官移植引起排斥反应的有
喷他佐辛的特点是
为防止影像变形,应遵守的原则是
锁骨骨折比较多见的并发症是
下列不属于感染艾滋病的高危人群的是
防风不具有的功效是()。
生产经营单位的从业人员,是指该单位从事生产经营活动各项工作的所有人员,包括()。《安全生产法》规定,安全生产中从业人员的权利有()。
《论语》中反映孔子教育公平思想的名言是()。
陈玉蓉.是湖北武汉一位平凡的母亲。她的儿子叶海滨13岁那年被确诊患有肝豆状核病变,这种肝病可能导致死亡。为了挽救儿子的生命,陈玉蓉请求医生将自己的肝移植给儿子。可是,她患有重度脂肪肝,无法捐肝救子。当晚她就开始了减肥之旅。随后的7个多月里,她每餐只吃半个拳
试述银行存在的若干理由,并讨论银行是否会消失?[北京大学2002研]
最新回复
(
0
)